Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution.
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Published: |
Elsevier
|
Subjects: | F40 - Écologie végétale, U30 - Méthodes de recherche, U10 - Informatique, mathématiques et statistiques, végétation, forêt, phénologie, télédétection, changement climatique, variation saisonnière, modèle de simulation, modèle mathématique, écosystème, productivité primaire, http://aims.fao.org/aos/agrovoc/c_8176, http://aims.fao.org/aos/agrovoc/c_3062, http://aims.fao.org/aos/agrovoc/c_5774, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_24894, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_2482, http://aims.fao.org/aos/agrovoc/c_34328, |
Online Access: | http://agritrop.cirad.fr/567856/ http://agritrop.cirad.fr/567856/1/document_567856.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-567856 |
---|---|
record_format |
koha |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 |
spellingShingle |
F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 Hmimina, Gabriel Dufrêne, Eric Pontailler, J.Y. Delpierre, Nicolas Aubinet, Marc Caquet, B. De Grandcourt, Agnès Burban, Benoit Flechard, Christophe Granier, André Gross, P. Heinesch, Bernard Longdoz, Bernard Moureaux, Christine Ourcival, Jean-Marc Rambal, Serge Saint André, Laurent Soudani, Kamel Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
description |
Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. |
format |
article |
topic_facet |
F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 |
author |
Hmimina, Gabriel Dufrêne, Eric Pontailler, J.Y. Delpierre, Nicolas Aubinet, Marc Caquet, B. De Grandcourt, Agnès Burban, Benoit Flechard, Christophe Granier, André Gross, P. Heinesch, Bernard Longdoz, Bernard Moureaux, Christine Ourcival, Jean-Marc Rambal, Serge Saint André, Laurent Soudani, Kamel |
author_facet |
Hmimina, Gabriel Dufrêne, Eric Pontailler, J.Y. Delpierre, Nicolas Aubinet, Marc Caquet, B. De Grandcourt, Agnès Burban, Benoit Flechard, Christophe Granier, André Gross, P. Heinesch, Bernard Longdoz, Bernard Moureaux, Christine Ourcival, Jean-Marc Rambal, Serge Saint André, Laurent Soudani, Kamel |
author_sort |
Hmimina, Gabriel |
title |
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
title_short |
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
title_full |
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
title_fullStr |
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
title_full_unstemmed |
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements |
title_sort |
evaluation of the potential of modis satellite data to predict vegetation phenology in different biomes: an investigation using ground-based ndvi measurements |
publisher |
Elsevier |
url |
http://agritrop.cirad.fr/567856/ http://agritrop.cirad.fr/567856/1/document_567856.pdf |
work_keys_str_mv |
AT hmiminagabriel evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT dufreneeric evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT pontaillerjy evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT delpierrenicolas evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT aubinetmarc evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT caquetb evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT degrandcourtagnes evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT burbanbenoit evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT flechardchristophe evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT granierandre evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT grossp evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT heineschbernard evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT longdozbernard evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT moureauxchristine evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT ourcivaljeanmarc evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT rambalserge evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT saintandrelaurent evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements AT soudanikamel evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements |
_version_ |
1819042709384462336 |
spelling |
dig-cirad-fr-5678562024-12-18T20:32:33Z http://agritrop.cirad.fr/567856/ http://agritrop.cirad.fr/567856/ Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Hmimina Gabriel, Dufrêne Eric, Pontailler J.Y., Delpierre Nicolas, Aubinet Marc, Caquet B., De Grandcourt Agnès, Burban Benoit, Flechard Christophe, Granier André, Gross P., Heinesch Bernard, Longdoz Bernard, Moureaux Christine, Ourcival Jean-Marc, Rambal Serge, Saint André Laurent, Soudani Kamel. 2013. Remote Sensing of Environment, 132 : 145-158.https://doi.org/10.1016/j.rse.2013.01.010 <https://doi.org/10.1016/j.rse.2013.01.010> Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements Hmimina, Gabriel Dufrêne, Eric Pontailler, J.Y. Delpierre, Nicolas Aubinet, Marc Caquet, B. De Grandcourt, Agnès Burban, Benoit Flechard, Christophe Granier, André Gross, P. Heinesch, Bernard Longdoz, Bernard Moureaux, Christine Ourcival, Jean-Marc Rambal, Serge Saint André, Laurent Soudani, Kamel eng 2013 Elsevier Remote Sensing of Environment F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/567856/1/document_567856.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.rse.2013.01.010 10.1016/j.rse.2013.01.010 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2013.01.010 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.rse.2013.01.010 |