Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements

Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution.

Saved in:
Bibliographic Details
Main Authors: Hmimina, Gabriel, Dufrêne, Eric, Pontailler, J.Y., Delpierre, Nicolas, Aubinet, Marc, Caquet, B., De Grandcourt, Agnès, Burban, Benoit, Flechard, Christophe, Granier, André, Gross, P., Heinesch, Bernard, Longdoz, Bernard, Moureaux, Christine, Ourcival, Jean-Marc, Rambal, Serge, Saint André, Laurent, Soudani, Kamel
Format: article biblioteca
Language:eng
Published: Elsevier
Subjects:F40 - Écologie végétale, U30 - Méthodes de recherche, U10 - Informatique, mathématiques et statistiques, végétation, forêt, phénologie, télédétection, changement climatique, variation saisonnière, modèle de simulation, modèle mathématique, écosystème, productivité primaire, http://aims.fao.org/aos/agrovoc/c_8176, http://aims.fao.org/aos/agrovoc/c_3062, http://aims.fao.org/aos/agrovoc/c_5774, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_24894, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_2482, http://aims.fao.org/aos/agrovoc/c_34328,
Online Access:http://agritrop.cirad.fr/567856/
http://agritrop.cirad.fr/567856/1/document_567856.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-567856
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic F40 - Écologie végétale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
végétation
forêt
phénologie
télédétection
changement climatique
variation saisonnière
modèle de simulation
modèle mathématique
écosystème
productivité primaire
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_24894
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_2482
http://aims.fao.org/aos/agrovoc/c_34328
F40 - Écologie végétale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
végétation
forêt
phénologie
télédétection
changement climatique
variation saisonnière
modèle de simulation
modèle mathématique
écosystème
productivité primaire
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_24894
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_2482
http://aims.fao.org/aos/agrovoc/c_34328
spellingShingle F40 - Écologie végétale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
végétation
forêt
phénologie
télédétection
changement climatique
variation saisonnière
modèle de simulation
modèle mathématique
écosystème
productivité primaire
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_24894
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_2482
http://aims.fao.org/aos/agrovoc/c_34328
F40 - Écologie végétale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
végétation
forêt
phénologie
télédétection
changement climatique
variation saisonnière
modèle de simulation
modèle mathématique
écosystème
productivité primaire
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_24894
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_2482
http://aims.fao.org/aos/agrovoc/c_34328
Hmimina, Gabriel
Dufrêne, Eric
Pontailler, J.Y.
Delpierre, Nicolas
Aubinet, Marc
Caquet, B.
De Grandcourt, Agnès
Burban, Benoit
Flechard, Christophe
Granier, André
Gross, P.
Heinesch, Bernard
Longdoz, Bernard
Moureaux, Christine
Ourcival, Jean-Marc
Rambal, Serge
Saint André, Laurent
Soudani, Kamel
Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
description Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution.
format article
topic_facet F40 - Écologie végétale
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
végétation
forêt
phénologie
télédétection
changement climatique
variation saisonnière
modèle de simulation
modèle mathématique
écosystème
productivité primaire
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_24894
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_2482
http://aims.fao.org/aos/agrovoc/c_34328
author Hmimina, Gabriel
Dufrêne, Eric
Pontailler, J.Y.
Delpierre, Nicolas
Aubinet, Marc
Caquet, B.
De Grandcourt, Agnès
Burban, Benoit
Flechard, Christophe
Granier, André
Gross, P.
Heinesch, Bernard
Longdoz, Bernard
Moureaux, Christine
Ourcival, Jean-Marc
Rambal, Serge
Saint André, Laurent
Soudani, Kamel
author_facet Hmimina, Gabriel
Dufrêne, Eric
Pontailler, J.Y.
Delpierre, Nicolas
Aubinet, Marc
Caquet, B.
De Grandcourt, Agnès
Burban, Benoit
Flechard, Christophe
Granier, André
Gross, P.
Heinesch, Bernard
Longdoz, Bernard
Moureaux, Christine
Ourcival, Jean-Marc
Rambal, Serge
Saint André, Laurent
Soudani, Kamel
author_sort Hmimina, Gabriel
title Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
title_short Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
title_full Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
title_fullStr Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
title_full_unstemmed Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
title_sort evaluation of the potential of modis satellite data to predict vegetation phenology in different biomes: an investigation using ground-based ndvi measurements
publisher Elsevier
url http://agritrop.cirad.fr/567856/
http://agritrop.cirad.fr/567856/1/document_567856.pdf
work_keys_str_mv AT hmiminagabriel evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT dufreneeric evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT pontaillerjy evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT delpierrenicolas evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT aubinetmarc evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT caquetb evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT degrandcourtagnes evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT burbanbenoit evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT flechardchristophe evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT granierandre evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT grossp evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT heineschbernard evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT longdozbernard evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT moureauxchristine evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT ourcivaljeanmarc evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT rambalserge evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT saintandrelaurent evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
AT soudanikamel evaluationofthepotentialofmodissatellitedatatopredictvegetationphenologyindifferentbiomesaninvestigationusinggroundbasedndvimeasurements
_version_ 1819042709384462336
spelling dig-cirad-fr-5678562024-12-18T20:32:33Z http://agritrop.cirad.fr/567856/ http://agritrop.cirad.fr/567856/ Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Hmimina Gabriel, Dufrêne Eric, Pontailler J.Y., Delpierre Nicolas, Aubinet Marc, Caquet B., De Grandcourt Agnès, Burban Benoit, Flechard Christophe, Granier André, Gross P., Heinesch Bernard, Longdoz Bernard, Moureaux Christine, Ourcival Jean-Marc, Rambal Serge, Saint André Laurent, Soudani Kamel. 2013. Remote Sensing of Environment, 132 : 145-158.https://doi.org/10.1016/j.rse.2013.01.010 <https://doi.org/10.1016/j.rse.2013.01.010> Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements Hmimina, Gabriel Dufrêne, Eric Pontailler, J.Y. Delpierre, Nicolas Aubinet, Marc Caquet, B. De Grandcourt, Agnès Burban, Benoit Flechard, Christophe Granier, André Gross, P. Heinesch, Bernard Longdoz, Bernard Moureaux, Christine Ourcival, Jean-Marc Rambal, Serge Saint André, Laurent Soudani, Kamel eng 2013 Elsevier Remote Sensing of Environment F40 - Écologie végétale U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques végétation forêt phénologie télédétection changement climatique variation saisonnière modèle de simulation modèle mathématique écosystème productivité primaire http://aims.fao.org/aos/agrovoc/c_8176 http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_24894 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_34328 Vegetation phenology is the study of the timing of seasonal events that are considered to be the result of adaptive responses to climate variations on short and long time scales. In the field of remote sensing of vegetation phenology, phenologicalmetrics are derived fromtime series of optical data. For that purpose, considerable effort has been specifically focused on developing noise reduction and cloud-contaminated data removal techniques to improve the quality of remotely-sensed time series. Comparative studies between time series composed of satellite data acquired under clear and cloudy conditions and from radiometric data obtainedwith high accuracy from ground-based measurements constitute a direct and effective way to assess the operational use and limitations of remote sensing for predicting the main plant phenological events. In the present paper, we sought to explicitly evaluate the potential use of MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing data for monitoring the seasonal dynamics of different types of vegetation cover that are representative of the major terrestrial biomes, including temperate deciduous forests, evergreen forests, African savannah, and crops. After cloud screening and filtering, we compared the temporal patterns and phenological metrics derived from in situ NDVI time series and from MODIS daily and 16-composite products. We also evaluated the effects of residual noise and the influence of data gaps in MODIS NDVI time series on the identification of the most relevant metrics for vegetation phenology monitoring. The results show that the inflexion points of a model fitted to a MODIS NDVI time series allow accurate estimates of the onset of greenness in the spring and the onset of yellowing in the autumn in deciduous forests (RMSE?one week). Phenologicalmetrics identical to those providedwith theMODIS Global Vegetation Phenology product (MDC12Q2) are less robust to data gaps, and they can be subject to large biases of approximately two weeks or more during the autumn phenological transitions. In the evergreen forests, in situ NDVI time series describe the phenology with high fidelity despite small temporal changes in the canopy foliage. However, MODIS is unable to provide consistent phenological patterns. In crops and savannah, MODIS NDVI time series reproduce the general temporal patterns of phenology, but significant discrepancies appear between MODIS and ground-based NDVI time series during very localized periods of time depending on the weather conditions and spatial heterogeneity within the MODIS pixel. In the rainforest, the temporal pattern exhibited by a MODIS 16-day composite NDVI time series ismore likely due to a pattern of noise in theNDVI data structure according to both rainy and dry seasons rather than to phenological changes. More investigations are needed, but in all cases, this result leads us to conclude that MODIS time series in tropical rainforests should be interpreted with great caution. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/567856/1/document_567856.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.rse.2013.01.010 10.1016/j.rse.2013.01.010 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2013.01.010 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.rse.2013.01.010