Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems
We present a two-criteria inverse modeling approach to analyze the effects of seasonal drought on ecosystem gas exchange at three Mediterranean sites. The three sites include two nearly monospecific Quercus ilex L. forests, one on karstic limestone (Puéchabon), the other on fluvial sand with access to groundwater (Castelporziano), and a typical multispecies shrubland on limestone (Arca di Noè). A canopy gas exchange model Process Pixel Net Ecosystem Exchange (PROXELNEE), which contains the Farquhar photosynthesis model coupled to stomatal conductance via the Ball-Berry model, was inverted in order to estimate the seasonal time course of canopy parameters from hourly values of ecosystem gross carbon uptake and transpiration. It was shown that an inverse estimation of leaf-level parameters was impossible when optimizing against ecosystem H2O or CO2 fluxes alone (unidentifiable parameters). In contrast, a criterion that constrained the optimization against both H2O and CO2 fluxes yielded stable estimates of leaf-level parameters. Two separate model inversions were implemented to test two alternative hypotheses about the response to drought: a reduction in active leaf area as a result of patchy stomatal closure or a change in photosynthetic capacities. In contrast to a previously tested hypothesis of classical (uniform) stomatal control, both hypotheses were equally able to describe the seasonality of carbon uptake and transpiration on all three sites, with a decline during the drought and recovery after autumn rainfall. Large reductions of up to 80%, in either active leaf area or photosynthetic capacities, were necessary to describe the observed carbon and water fluxes at the end of the drought period. With a threshold-type relationship, soil water content was an excellent predictor of these changes. With the drought-dependent parameter changes included, the canopy model explains 80-90% of the variance of hourly gross CO2 uptake (root mean squared error (RMSE): 1.1-2.6 pmol m-2 s-1) and 70-80% of the variance of hourly transpiration (RMSE: 0.02-0.03 mm h-1) at all sites. In addition to drought effects, changes in leaf photosynthetic activity not related to water availability, i.e., high spring activity, were detected through the inverse modeling approach. Moreover, our study exemplifies a kind of multiconstraint inverse modeling that can be profitably used for calibrating ecosystem models that are meant for global applications with ecosystem flux data.
Main Authors: | , , , , , , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | F61 - Physiologie végétale - Nutrition, U10 - Informatique, mathématiques et statistiques, F40 - Écologie végétale, écosystème, strate végétale, couvert, échange gazeux, modèle, photosynthèse, transpiration, sécheresse, réponse de la plante, http://aims.fao.org/aos/agrovoc/c_2482, http://aims.fao.org/aos/agrovoc/c_27989, http://aims.fao.org/aos/agrovoc/c_1262, http://aims.fao.org/aos/agrovoc/c_11098, http://aims.fao.org/aos/agrovoc/c_4881, http://aims.fao.org/aos/agrovoc/c_5812, http://aims.fao.org/aos/agrovoc/c_7871, http://aims.fao.org/aos/agrovoc/c_2391, http://aims.fao.org/aos/agrovoc/c_25446, http://aims.fao.org/aos/agrovoc/c_4698, |
Online Access: | http://agritrop.cirad.fr/525671/ http://agritrop.cirad.fr/525671/1/525671.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-525671 |
---|---|
record_format |
koha |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_4698 F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_4698 |
spellingShingle |
F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_4698 F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_4698 Reichstein, Markus Tenhunen, John D. Roupsard, Olivier Ourcival, Jean-Marc Rambal, Serge Miglietta, Franco Peressotti, Alessandro Pecchiari, Marco Tirone, Giampiero Valentini, Riccardo Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
description |
We present a two-criteria inverse modeling approach to analyze the effects of seasonal drought on ecosystem gas exchange at three Mediterranean sites. The three sites include two nearly monospecific Quercus ilex L. forests, one on karstic limestone (Puéchabon), the other on fluvial sand with access to groundwater (Castelporziano), and a typical multispecies shrubland on limestone (Arca di Noè). A canopy gas exchange model Process Pixel Net Ecosystem Exchange (PROXELNEE), which contains the Farquhar photosynthesis model coupled to stomatal conductance via the Ball-Berry model, was inverted in order to estimate the seasonal time course of canopy parameters from hourly values of ecosystem gross carbon uptake and transpiration. It was shown that an inverse estimation of leaf-level parameters was impossible when optimizing against ecosystem H2O or CO2 fluxes alone (unidentifiable parameters). In contrast, a criterion that constrained the optimization against both H2O and CO2 fluxes yielded stable estimates of leaf-level parameters. Two separate model inversions were implemented to test two alternative hypotheses about the response to drought: a reduction in active leaf area as a result of patchy stomatal closure or a change in photosynthetic capacities. In contrast to a previously tested hypothesis of classical (uniform) stomatal control, both hypotheses were equally able to describe the seasonality of carbon uptake and transpiration on all three sites, with a decline during the drought and recovery after autumn rainfall. Large reductions of up to 80%, in either active leaf area or photosynthetic capacities, were necessary to describe the observed carbon and water fluxes at the end of the drought period. With a threshold-type relationship, soil water content was an excellent predictor of these changes. With the drought-dependent parameter changes included, the canopy model explains 80-90% of the variance of hourly gross CO2 uptake (root mean squared error (RMSE): 1.1-2.6 pmol m-2 s-1) and 70-80% of the variance of hourly transpiration (RMSE: 0.02-0.03 mm h-1) at all sites. In addition to drought effects, changes in leaf photosynthetic activity not related to water availability, i.e., high spring activity, were detected through the inverse modeling approach. Moreover, our study exemplifies a kind of multiconstraint inverse modeling that can be profitably used for calibrating ecosystem models that are meant for global applications with ecosystem flux data. |
format |
article |
topic_facet |
F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 http://aims.fao.org/aos/agrovoc/c_4698 |
author |
Reichstein, Markus Tenhunen, John D. Roupsard, Olivier Ourcival, Jean-Marc Rambal, Serge Miglietta, Franco Peressotti, Alessandro Pecchiari, Marco Tirone, Giampiero Valentini, Riccardo |
author_facet |
Reichstein, Markus Tenhunen, John D. Roupsard, Olivier Ourcival, Jean-Marc Rambal, Serge Miglietta, Franco Peressotti, Alessandro Pecchiari, Marco Tirone, Giampiero Valentini, Riccardo |
author_sort |
Reichstein, Markus |
title |
Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
title_short |
Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
title_full |
Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
title_fullStr |
Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
title_full_unstemmed |
Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems |
title_sort |
inverse modeling of seasonal drought effects on canopy co2/h2o exchange in three mediterranenan ecosystems |
url |
http://agritrop.cirad.fr/525671/ http://agritrop.cirad.fr/525671/1/525671.pdf |
work_keys_str_mv |
AT reichsteinmarkus inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT tenhunenjohnd inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT roupsardolivier inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT ourcivaljeanmarc inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT rambalserge inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT migliettafranco inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT peressottialessandro inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT pecchiarimarco inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT tironegiampiero inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems AT valentiniriccardo inversemodelingofseasonaldroughteffectsoncanopyco2h2oexchangeinthreemediterranenanecosystems |
_version_ |
1816146835535822848 |
spelling |
dig-cirad-fr-5256712024-11-08T17:04:52Z http://agritrop.cirad.fr/525671/ http://agritrop.cirad.fr/525671/ Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems. Reichstein Markus, Tenhunen John D., Roupsard Olivier, Ourcival Jean-Marc, Rambal Serge, Miglietta Franco, Peressotti Alessandro, Pecchiari Marco, Tirone Giampiero, Valentini Riccardo. 2003. Journal of Geophysical Research. Atmospheres, 108 (D23) : 1-16.https://doi.org/10.1029/2003JD003430 <https://doi.org/10.1029/2003JD003430> Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranenan ecosystems Reichstein, Markus Tenhunen, John D. Roupsard, Olivier Ourcival, Jean-Marc Rambal, Serge Miglietta, Franco Peressotti, Alessandro Pecchiari, Marco Tirone, Giampiero Valentini, Riccardo eng 2003 Journal of Geophysical Research. Atmospheres F61 - Physiologie végétale - Nutrition U10 - Informatique, mathématiques et statistiques F40 - Écologie végétale écosystème strate végétale couvert échange gazeux modèle photosynthèse transpiration sécheresse réponse de la plante http://aims.fao.org/aos/agrovoc/c_2482 http://aims.fao.org/aos/agrovoc/c_27989 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_11098 http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_5812 http://aims.fao.org/aos/agrovoc/c_7871 http://aims.fao.org/aos/agrovoc/c_2391 http://aims.fao.org/aos/agrovoc/c_25446 région méditerranéenne http://aims.fao.org/aos/agrovoc/c_4698 We present a two-criteria inverse modeling approach to analyze the effects of seasonal drought on ecosystem gas exchange at three Mediterranean sites. The three sites include two nearly monospecific Quercus ilex L. forests, one on karstic limestone (Puéchabon), the other on fluvial sand with access to groundwater (Castelporziano), and a typical multispecies shrubland on limestone (Arca di Noè). A canopy gas exchange model Process Pixel Net Ecosystem Exchange (PROXELNEE), which contains the Farquhar photosynthesis model coupled to stomatal conductance via the Ball-Berry model, was inverted in order to estimate the seasonal time course of canopy parameters from hourly values of ecosystem gross carbon uptake and transpiration. It was shown that an inverse estimation of leaf-level parameters was impossible when optimizing against ecosystem H2O or CO2 fluxes alone (unidentifiable parameters). In contrast, a criterion that constrained the optimization against both H2O and CO2 fluxes yielded stable estimates of leaf-level parameters. Two separate model inversions were implemented to test two alternative hypotheses about the response to drought: a reduction in active leaf area as a result of patchy stomatal closure or a change in photosynthetic capacities. In contrast to a previously tested hypothesis of classical (uniform) stomatal control, both hypotheses were equally able to describe the seasonality of carbon uptake and transpiration on all three sites, with a decline during the drought and recovery after autumn rainfall. Large reductions of up to 80%, in either active leaf area or photosynthetic capacities, were necessary to describe the observed carbon and water fluxes at the end of the drought period. With a threshold-type relationship, soil water content was an excellent predictor of these changes. With the drought-dependent parameter changes included, the canopy model explains 80-90% of the variance of hourly gross CO2 uptake (root mean squared error (RMSE): 1.1-2.6 pmol m-2 s-1) and 70-80% of the variance of hourly transpiration (RMSE: 0.02-0.03 mm h-1) at all sites. In addition to drought effects, changes in leaf photosynthetic activity not related to water availability, i.e., high spring activity, were detected through the inverse modeling approach. Moreover, our study exemplifies a kind of multiconstraint inverse modeling that can be profitably used for calibrating ecosystem models that are meant for global applications with ecosystem flux data. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/525671/1/525671.pdf text Cirad license info:eu-repo/semantics/openAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1029/2003JD003430 10.1029/2003JD003430 info:eu-repo/semantics/altIdentifier/doi/10.1029/2003JD003430 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1029/2003JD003430 |