Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay

Dietary inclusion of contain-tannin legumes may reduce enteric methane emission in ruminants. To evaluate methane emissions from sheep fed a kikuyu grass (Cenchrus clandestinus) diet partially substituted with lotus (Lotus uliginosus), twelve growing rams, with 23±2 kg average liveweight, were assigned randomly to two treatments and with three measurement periods in a switchover design. Treatments consisted of 100% kikuyu hay or 70% kikuyu hay: 30% lotus hay and with 6 rams per treatment. Each of three periods lasted 20 d, where the first 15 d were for acclimatization and the last 5 d for measurements. Rams were placed in metabolic cages and fed once a day (8 AM) at 90% of their voluntary feed intake, with free access to drinking water. Feed intake, fecal production and feed digestibility were determined at each period. Methane production was measured for each treatment group of 6 rams using the poly-tunnel technique. Legume addition reduced total methane production (27.6 vs. 23.1 g/animal; p<0.01), methane production per dry matter intake (DMI) (18.8 vs. 12.2 g/kg DMI; p<0.01), methane production per digestible OM (DOM) (36.1 vs. 23.4 g/kg DOM; p<0.01) and methane production per digestible NDF (DNDF) (43.5 vs 34.0 g/kg DNDF; p<0.01). In conclusion, lotus inclusion in pasture systems could be a suitable legume to reduce methane emissions in grazing systems.

Saved in:
Bibliographic Details
Main Authors: Vargas Martínez, Juan de Jesús, Pabón Restrepo, Martha Lucia, Carulla Fornaguera, Juan Evangelista
Format: article biblioteca
Language:eng
Published: Asociación Latinoamericanos de Producción Animal 2021
Subjects:Alimentación animal - L02, Ovinos, Alimentación de ovinos, Metano, Pennisetum clandestinum, Ganadería y especies menores, http://aims.fao.org/aos/agrovoc/c_7030, http://aims.fao.org/aos/agrovoc/c_64161801, http://aims.fao.org/aos/agrovoc/c_4784, http://aims.fao.org/aos/agrovoc/c_5675,
Online Access:https://ojs.alpa.uy/index.php/ojs_files/article/view/2823
http://hdl.handle.net/20.500.12324/38980
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-38980
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language eng
topic Alimentación animal - L02
Ovinos
Alimentación de ovinos
Metano
Pennisetum clandestinum
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_7030
http://aims.fao.org/aos/agrovoc/c_64161801
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_5675
Alimentación animal - L02
Ovinos
Alimentación de ovinos
Metano
Pennisetum clandestinum
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_7030
http://aims.fao.org/aos/agrovoc/c_64161801
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_5675
spellingShingle Alimentación animal - L02
Ovinos
Alimentación de ovinos
Metano
Pennisetum clandestinum
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_7030
http://aims.fao.org/aos/agrovoc/c_64161801
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_5675
Alimentación animal - L02
Ovinos
Alimentación de ovinos
Metano
Pennisetum clandestinum
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_7030
http://aims.fao.org/aos/agrovoc/c_64161801
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_5675
Vargas Martínez, Juan de Jesús
Pabón Restrepo, Martha Lucia
Carulla Fornaguera, Juan Evangelista
Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
description Dietary inclusion of contain-tannin legumes may reduce enteric methane emission in ruminants. To evaluate methane emissions from sheep fed a kikuyu grass (Cenchrus clandestinus) diet partially substituted with lotus (Lotus uliginosus), twelve growing rams, with 23±2 kg average liveweight, were assigned randomly to two treatments and with three measurement periods in a switchover design. Treatments consisted of 100% kikuyu hay or 70% kikuyu hay: 30% lotus hay and with 6 rams per treatment. Each of three periods lasted 20 d, where the first 15 d were for acclimatization and the last 5 d for measurements. Rams were placed in metabolic cages and fed once a day (8 AM) at 90% of their voluntary feed intake, with free access to drinking water. Feed intake, fecal production and feed digestibility were determined at each period. Methane production was measured for each treatment group of 6 rams using the poly-tunnel technique. Legume addition reduced total methane production (27.6 vs. 23.1 g/animal; p<0.01), methane production per dry matter intake (DMI) (18.8 vs. 12.2 g/kg DMI; p<0.01), methane production per digestible OM (DOM) (36.1 vs. 23.4 g/kg DOM; p<0.01) and methane production per digestible NDF (DNDF) (43.5 vs 34.0 g/kg DNDF; p<0.01). In conclusion, lotus inclusion in pasture systems could be a suitable legume to reduce methane emissions in grazing systems.
format article
topic_facet Alimentación animal - L02
Ovinos
Alimentación de ovinos
Metano
Pennisetum clandestinum
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_7030
http://aims.fao.org/aos/agrovoc/c_64161801
http://aims.fao.org/aos/agrovoc/c_4784
http://aims.fao.org/aos/agrovoc/c_5675
author Vargas Martínez, Juan de Jesús
Pabón Restrepo, Martha Lucia
Carulla Fornaguera, Juan Evangelista
author_facet Vargas Martínez, Juan de Jesús
Pabón Restrepo, Martha Lucia
Carulla Fornaguera, Juan Evangelista
author_sort Vargas Martínez, Juan de Jesús
title Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
title_short Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
title_full Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
title_fullStr Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
title_full_unstemmed Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
title_sort methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay
publisher Asociación Latinoamericanos de Producción Animal
publishDate 2021
url https://ojs.alpa.uy/index.php/ojs_files/article/view/2823
http://hdl.handle.net/20.500.12324/38980
work_keys_str_mv AT vargasmartinezjuandejesus methaneemissionsfromlambsfedkikuyuhayaloneormixturedwithlotushay
AT pabonrestrepomarthalucia methaneemissionsfromlambsfedkikuyuhayaloneormixturedwithlotushay
AT carullafornaguerajuanevangelista methaneemissionsfromlambsfedkikuyuhayaloneormixturedwithlotushay
_version_ 1794796476827697152
spelling dig-bac-20.500.12324-389802024-03-07T03:00:37Z Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay Vargas Martínez, Juan de Jesús Pabón Restrepo, Martha Lucia Carulla Fornaguera, Juan Evangelista Alimentación animal - L02 Ovinos Alimentación de ovinos Metano Pennisetum clandestinum Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_7030 http://aims.fao.org/aos/agrovoc/c_64161801 http://aims.fao.org/aos/agrovoc/c_4784 http://aims.fao.org/aos/agrovoc/c_5675 Dietary inclusion of contain-tannin legumes may reduce enteric methane emission in ruminants. To evaluate methane emissions from sheep fed a kikuyu grass (Cenchrus clandestinus) diet partially substituted with lotus (Lotus uliginosus), twelve growing rams, with 23±2 kg average liveweight, were assigned randomly to two treatments and with three measurement periods in a switchover design. Treatments consisted of 100% kikuyu hay or 70% kikuyu hay: 30% lotus hay and with 6 rams per treatment. Each of three periods lasted 20 d, where the first 15 d were for acclimatization and the last 5 d for measurements. Rams were placed in metabolic cages and fed once a day (8 AM) at 90% of their voluntary feed intake, with free access to drinking water. Feed intake, fecal production and feed digestibility were determined at each period. Methane production was measured for each treatment group of 6 rams using the poly-tunnel technique. Legume addition reduced total methane production (27.6 vs. 23.1 g/animal; p<0.01), methane production per dry matter intake (DMI) (18.8 vs. 12.2 g/kg DMI; p<0.01), methane production per digestible OM (DOM) (36.1 vs. 23.4 g/kg DOM; p<0.01) and methane production per digestible NDF (DNDF) (43.5 vs 34.0 g/kg DNDF; p<0.01). In conclusion, lotus inclusion in pasture systems could be a suitable legume to reduce methane emissions in grazing systems. 2024-03-06T20:17:27Z 2024-03-06T20:17:27Z 2021 2021 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://ojs.alpa.uy/index.php/ojs_files/article/view/2823 2075-8359 http://hdl.handle.net/20.500.12324/38980 10.53588/alpa.291201 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Archivos latinoamericanos de producción animal 29 44593 1 9 Annison, E. F. and D.G. Armstrong. 1970. Physiology of digestion and metabolism in the ruminant. Ed: Oriel Press, Ltd. Newcastle, England. Archimède, H., M. Eugène, C. Magdeleine, M. Boval, C. Martin, D. Morgavi, P. Lecomte and M. Doreau. 2011. Comparison of methane production between C3 y C4 grasses and legumes. Anim. Feed Sci. Tech. 166­167: 59­64. https://doi.org/10.1016/j.anifeedsci.2011.04.003 AOAC. 2005. Official methods of analysis. 18th ed. Ed. Association of Official Agricultural Chemists. Washington D.C. USA. Bhatta, R., Y. Uyeno, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal population. J. Dairy Sci. 92: 5512­5522. https://doi.org/10.3168/jds.2008­1441 Betancourt, M., M. Martínez de Acurero, T. Clavero, R. Razz, S. Pietrosemoli y O. Araujo­Febres. 2003. Efecto de la melaza, ácido fórmico y tiempo de fermentación sobre el pH y temperatura en microsilos de Leucaena leucocephala. Rev. Fac. Agron. (LUZ). 20: 493­501. https://produccioncientificaluz.org/index.php/agr onomia/article/view/26475/27101 Blaxter K., and J. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Brit. J. Nutr. 19: 511­522. https://doi.org/10.1079/BJN19650046 Carulla, J., M. Kreuzer, A. Machmüller and H. Hess. 2005. Supplementation of Acacia mearnsii tannin decreases methanogenesis and urinary nitrogen in forage­fed sheep. Aust. J. Agr. Res. 56: 961­970. https://doi.org/10.1071/AR05022 Carulla, J., and E. Ortega. 2016. Sistemas de producción lechera en Colombia: Retos y oportunidades. Arch. Latinoam. Prod. Anim. 24: 83­87. https://ojs.alpa.uy/index.php/ojs_files/article/vie w/2526 Castro, E., J. Mojica, J. León, M. Pabón, J. Carulla and E. Cárdenas. 2008. Productividad de pasturas y producción de leche bovina bajo pastoreo de gramínea y gramínea + Lotus uliginosus en Mosquera, Colombia. Rev. Med. Vet. Zoot. 55: 9­21. https://doi.org/10.15446/rfmvz Gerber, P., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci and G. Tempio. 2013, Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Roma, Italia. Hess, H., L. Monsalve, C. Lascano, J. Carulla, T. Díaz and M Kreuzer. 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agr. Res. 54: 703­713. https://doi.org/10.1071/AR02241 Janssen, P. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Tech. 160: 1­22. https://doi.org/10.1016/j.anifeedsci.2010.07.002 Johnson, K., and D.E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483­2492. https://doi.org/10.2527/1995.7382483x Lee, J., S. Woodward, G. Waghorn and D. Clark. 2004. Methane emissions by dairy cows fed increasing proportions of white clover (Trifolium repens) in pasture. Pr. N. Z. Grassl. Assoc. 66: 151­155. https://www.grassland.org.nz/publications/nzgra ssland_publication_430.pdf Lopes, J., L. de Matos, M. Harper, F. Giallongo, J. Oh, D. Gruen, S. Ono, M. Kindermann, S. Duval and A. Hristov. 2016. Effect of 3­nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 99: 5335­5344. https://doi.org/10.3168/jds.2015­10832 Lovett, D., D. McGilloway, A. Bortolozzo, M. Hawkins, J. Callan, B. Flynn and F. O´Mara. 2005. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass Forage Sci. 61: 9­21. https://doi.org/10.1111/j.1365­2494.2006.00500.x Lovett, D., A. Bortolozzo, P. Conaghan, P. O´Kiely and F. O´Mara. 2004. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci. 59: 227­232. https://doi.org/10.1111/j.1365­2494.2004.00421.x Martínez, R., N. Martínez and M. Martínez. 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. 1st Edition. Ed: Fondo Nacional Universitario. Bogotá, Colombia Makkar, H. 2016. Smart livestock feeding strategies for Makkar, H. 2016. Smart livestock feeding strategies for harvesting triple gain – the desired outcomes in planet, people and profit dimensions: a developing country perspective. Anim. Prod. Sci. 56: 519­534. https://doi.org/10.1071/AN15557 McCaughey, W., K. Wittenberg and D. Corrigan. 1999. Impact of pasture on methane production by lactating beef cows. Can. J. Anim. Sci. 79: 221­226. https://doi.org/10.4141/A98­107 Molina, I., E. Angarita, O. Mayorga, J. Chará and R. Barahona. 2016, Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet base don Cynodon plectostachyus. Livest. Sci. 185: 24­ 29. https://doi.org/10.1016/j.livsci.2016.01.009 Morales, A., J. León, E. Cárdenas, G. Afanador and J. Carulla. 2013, Composición química de la leche, digestibilidad in vitro de la materia seca y producción en vacas alimentadas con gramíneas solas o asociadas con Lotus uliginosus. Rev. Med. Vet. Zoot. 60: 32­48. https://doi.org/10.15446/rfmvz Moss, A., J. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zoot. 49: 231­253. https://doi.org/ff10.1051/animres:2000119 Murphy, M., R. Baldwin and L. Koong. 1982. Murphy, M., R. Baldwin and L. Koong. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim. Sci. 55: 411­421. https://doi.org/10.2527/jas1982.552411x Newbold, C., E Ramos. 2020. Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal. 14:78­86. https://doi.org/10.1017/S1751731119003252 Parra, D., and M. Avila. 2010. Determinación de los parámetros fisiológicos y dinámica ruminal de bovinos en condiciones de poli­túnel para evaluar emisiones de metano en trópico alto y bajo colombiano. Facultad de Ciencias Agropecuarias. Universidad de Cundinamarca. Fusagasugá, Colombia. Patra, A., and J. Saxena. 2010. Review: A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 71: 1198­1222. https://doi.org/10.1016/j.phytochem.2010.05.010 Pinares­Patiño, C., J. McEwan, K. Dodds, E. Cardenas, R. Hegarty, J. Koolaard and H. Clark. 2011. Repeatability of methane emissions from sheep. Anim. Feed Sci. Tech. 166: 210­218. https://doi.org/10.1016/j.anifeedsci.2011.04.068 Pinares­Patiño, C., G. Waghorn, A. Machmüller, B. Vlaming, G. Molano, A. Cavanagh and H. Clark. 2007. Methane emissions and digestive physiology of non­lactating dairy cows fed pasture forages. Can J. Anim. Sci. 87: 601­613. https://doi.org/10.4141/CJAS06023 Pinares­Patiño, C., M. Ulyatt, K. Lassey, T. Barry and C. Holmes. 2003. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed Lucerne hay. J. Agr. Sci. 140: 205­214. https://doi.org/10.1017/S0021859603003046 Ribeiro­Filho, H., R. Delagarde and J. Peyraud. 2005. Herbage intake and milk yield of dairy cows grazing perennial ryegrass swards or white clover/perennial ryegrass swards at low and medium herbage allowance. Anim. Feed Sci. Tech. 119: 13­27. https://doi.org/10.1016/j.anifeedsci.2004.12.009 Stürm, C., T. Tiemann, C. Lascano, M. Kreuzer and H. Hess. 2007. Nutrient composition and in vitro ruminal fermentation of tropical legume mixtures with contrasting tannin contents. Anim. Feed Sci. Tech. 138: 29­46. https://doi.org/10.1016/j.anifeedsci.2006.11.008 Tavendale, M., L. Meagher, D. Pacheco, N. Walker, G. Attwood and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Tech. 123­124: 403­ 419. https://doi.org/10.1016/j.anifeedsci.2005.04.037 Terrill, T., A. Rowan, G. Douglas and T. Barry. 1992. Determination of extractable and bound condensed tannin concentration in forage plants, protein concentrated meals and cereal grains. J. Sci. Food Agr. 58: 321­329. https://doi.org/10.1002/jsfa.2740580306 Tiemann, T., C. Lascano, H. Wettstein, A. Mayer, M. Kreuzer and H. Hess. 2008a. Effect of the tropical tannin­rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing labs. Animal. 2: 790­799. https://doi.org/10.1017/S1751731108001791 Tiemann, T., C. Lascano, M. Kreuzer and H. Hess. 2008b. The ruminal degradability of fiber explains part of the low nutritional value and reduced methanogenesis in highly tanniferous tropical legumes. J. Sci. Food Agr. 88:1794­1803. https://doi.org/10.1002/jsfa.3282 Van Soest, P., J. Robertson and B. Lewis. 1991. Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. J. Dairy Sci. 74: 3583­3597. https://doi.org/10.3168/jds.S0022­ 0302(91)78551­2 Vargas, J., A. Sierra, J. Benavidez, Y. Avellaneda, O. Mayorga and C. Ariza. 2018a. Establecimiento y producción de raigrás y trébol en dos regiones del trópico alto colombiano. Agron. Mesoam. 29:177­ 191. https://doi.org/10.15517/ma.v29i1.28077 Vargas, J., M. Pabón and J. Carulla. 2018b. Methane production from four forages at three maturity stages in a ruminal in vitro system. Rev. Colomb. Cienc. Pecu. 31: 120­129. https://doi.org/10.17533/udea.rccp.v31n2a05 Vargas, J., M. Pabón and J. Carulla. 2014. Producción de metano in vitro en mezcla de gramíneas leguminosas del trópico alto colombiano. Arch. Zootec. 63: 397­407. http://dx.doi.org/10.4321/S0004­ 05922014000300001 Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production ­ Progress and challenges. Anim. Feed Sci. Tech. 147: 116­139. https://doi.org/10.1016/j.anifeedsci.2007.09.013 Waghorn, G., H. Clark, V. Taufa and A. Cavanagh. 2007. Monensin controlled release capsules for improved production and mitigating methane in dairy cows fed pasture. Proc. New. Zeal. Soc. An. 67: 266­271. http://www.sciquest.org.nz/node/147512 Woodward, S., G. Waghorn and P. Laboyrie. 2004. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. Proc. New. Zeal. Soc. An. 64: 160­164. Woodward, S., G. Waghorn, M. Ulyatt and K. Lassey. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. New. Zeal. Soc. An. 61: 23­26 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Colombia Asociación Latinoamericanos de Producción Animal Maracay, (Venezuela) Archivos latinoamericanos de producción animal; Vol. 29, Núm. 44593 (2021): Archivos latinoamericanos de producción animal;p. 1 -9.