Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses

Estos afectan y generan impactos negativos sobre patrones de biodiversidad y servicios ecosistémicos (sostenimiento y aprovisionamiento) que influyen sobre la productividad agrícola y, por ende, la seguridad alimentaria (Urban et al., 2016). Dicha productividad y el crecimiento de las plantas (de una gran diversidad de cultivos agronómicos) están restringidos intermitentemente por diversos factores ambientales que generan un gran número de estreses de tipo abiótico. Dentro de estos, se encuentran la salinidad, la toxicidad por la acumulación de metales pesados, las temperaturas extremas (altas y bajas) y el déficit hídrico provocado por las sequías (Aroca, 2012). De todos estos tipos de estreses abióticos, los que más afectan la producción agrícola a nivel mundial son el déficit hídrico causado por las sequías y la salinidad en los suelos (Kole et al., 2010; Shrivastava & Kumar, 2015). La sequía disminuye el potencial hídrico del suelo, afectando la absorción de agua por parte del sistema radical de las plantas, lo que causa un estrés oxidativo e incrementa la síntesis de especies reactivas de oxígeno (ros, por sus siglas en inglés: reactive oxygen species), que generan daños irreparables en las células vegetales (Vurukonda et al., 2016). De igual manera, esta condición de estrés implica daños en los procesos metabólicos que afectan la fotosíntesis y la asimilación y absorción de nutrientes, lo que produce efectos nocivos sobre el crecimiento y la productividad de los cultivos (Osakabe et al., 2014). Por estas razones, las sequías han ocasionado reducciones significativas en los rendimientos de cultivos como trigo, arroz, maíz y cebada (Miransari, 2014), y se espera que cause graves problemas de crecimiento en las plantas al afectar más del 50 % de las tierras cultivables para 2050 (Kasim et al., 2013).

Saved in:
Bibliographic Details
Main Authors: Moreno Galván, Andrés Eduardo, Cortés Patiño, Sandra Lucía, Mendoza Labrador, Jonathan Alberto, Bécquer Granados, Carlos José
Format: book part biblioteca
Language:spa
Published: Corporación colombiana de investigación agropecuaria - AGROSAVIA 2021-12-22
Subjects:Propagación de plantas - F02, Arreglo y sistemas de cultivo - F08, Crecimiento de planta, Mitigación, Cambio climático, Factores ambientales, Estrés osmótico, Transversal, http://aims.fao.org/aos/agrovoc/c_08842b17, http://aims.fao.org/aos/agrovoc/c_10a6fbd8, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_2594, http://aims.fao.org/aos/agrovoc/c_35750,
Online Access:http://hdl.handle.net/20.500.12324/36980
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-36980
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language spa
topic Propagación de plantas - F02
Arreglo y sistemas de cultivo - F08
Crecimiento de planta
Mitigación
Cambio climático
Factores ambientales
Estrés osmótico
Transversal
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_10a6fbd8
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2594
http://aims.fao.org/aos/agrovoc/c_35750
Propagación de plantas - F02
Arreglo y sistemas de cultivo - F08
Crecimiento de planta
Mitigación
Cambio climático
Factores ambientales
Estrés osmótico
Transversal
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_10a6fbd8
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2594
http://aims.fao.org/aos/agrovoc/c_35750
spellingShingle Propagación de plantas - F02
Arreglo y sistemas de cultivo - F08
Crecimiento de planta
Mitigación
Cambio climático
Factores ambientales
Estrés osmótico
Transversal
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_10a6fbd8
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2594
http://aims.fao.org/aos/agrovoc/c_35750
Propagación de plantas - F02
Arreglo y sistemas de cultivo - F08
Crecimiento de planta
Mitigación
Cambio climático
Factores ambientales
Estrés osmótico
Transversal
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_10a6fbd8
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2594
http://aims.fao.org/aos/agrovoc/c_35750
Moreno Galván, Andrés Eduardo
Cortés Patiño, Sandra Lucía
Mendoza Labrador, Jonathan Alberto
Bécquer Granados, Carlos José
Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
description Estos afectan y generan impactos negativos sobre patrones de biodiversidad y servicios ecosistémicos (sostenimiento y aprovisionamiento) que influyen sobre la productividad agrícola y, por ende, la seguridad alimentaria (Urban et al., 2016). Dicha productividad y el crecimiento de las plantas (de una gran diversidad de cultivos agronómicos) están restringidos intermitentemente por diversos factores ambientales que generan un gran número de estreses de tipo abiótico. Dentro de estos, se encuentran la salinidad, la toxicidad por la acumulación de metales pesados, las temperaturas extremas (altas y bajas) y el déficit hídrico provocado por las sequías (Aroca, 2012). De todos estos tipos de estreses abióticos, los que más afectan la producción agrícola a nivel mundial son el déficit hídrico causado por las sequías y la salinidad en los suelos (Kole et al., 2010; Shrivastava & Kumar, 2015). La sequía disminuye el potencial hídrico del suelo, afectando la absorción de agua por parte del sistema radical de las plantas, lo que causa un estrés oxidativo e incrementa la síntesis de especies reactivas de oxígeno (ros, por sus siglas en inglés: reactive oxygen species), que generan daños irreparables en las células vegetales (Vurukonda et al., 2016). De igual manera, esta condición de estrés implica daños en los procesos metabólicos que afectan la fotosíntesis y la asimilación y absorción de nutrientes, lo que produce efectos nocivos sobre el crecimiento y la productividad de los cultivos (Osakabe et al., 2014). Por estas razones, las sequías han ocasionado reducciones significativas en los rendimientos de cultivos como trigo, arroz, maíz y cebada (Miransari, 2014), y se espera que cause graves problemas de crecimiento en las plantas al afectar más del 50 % de las tierras cultivables para 2050 (Kasim et al., 2013).
format book part
topic_facet Propagación de plantas - F02
Arreglo y sistemas de cultivo - F08
Crecimiento de planta
Mitigación
Cambio climático
Factores ambientales
Estrés osmótico
Transversal
http://aims.fao.org/aos/agrovoc/c_08842b17
http://aims.fao.org/aos/agrovoc/c_10a6fbd8
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_2594
http://aims.fao.org/aos/agrovoc/c_35750
author Moreno Galván, Andrés Eduardo
Cortés Patiño, Sandra Lucía
Mendoza Labrador, Jonathan Alberto
Bécquer Granados, Carlos José
author_facet Moreno Galván, Andrés Eduardo
Cortés Patiño, Sandra Lucía
Mendoza Labrador, Jonathan Alberto
Bécquer Granados, Carlos José
author_sort Moreno Galván, Andrés Eduardo
title Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
title_short Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
title_full Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
title_fullStr Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
title_full_unstemmed Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
title_sort aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses
publisher Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2021-12-22
url http://hdl.handle.net/20.500.12324/36980
work_keys_str_mv AT morenogalvanandreseduardo aplicaciondebacteriaspromotorasdelcrecimientovegetalenlamitigaciondeestreses
AT cortespatinosandralucia aplicaciondebacteriaspromotorasdelcrecimientovegetalenlamitigaciondeestreses
AT mendozalabradorjonathanalberto aplicaciondebacteriaspromotorasdelcrecimientovegetalenlamitigaciondeestreses
AT becquergranadoscarlosjose aplicaciondebacteriaspromotorasdelcrecimientovegetalenlamitigaciondeestreses
_version_ 1762930383053127680
spelling dig-bac-20.500.12324-369802023-02-23T20:44:42Z Aplicación de bacterias promotoras del crecimiento vegetal en la mitigación de estreses Moreno Galván, Andrés Eduardo Cortés Patiño, Sandra Lucía Mendoza Labrador, Jonathan Alberto Bécquer Granados, Carlos José Propagación de plantas - F02 Arreglo y sistemas de cultivo - F08 Crecimiento de planta Mitigación Cambio climático Factores ambientales Estrés osmótico Transversal http://aims.fao.org/aos/agrovoc/c_08842b17 http://aims.fao.org/aos/agrovoc/c_10a6fbd8 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_2594 http://aims.fao.org/aos/agrovoc/c_35750 Estos afectan y generan impactos negativos sobre patrones de biodiversidad y servicios ecosistémicos (sostenimiento y aprovisionamiento) que influyen sobre la productividad agrícola y, por ende, la seguridad alimentaria (Urban et al., 2016). Dicha productividad y el crecimiento de las plantas (de una gran diversidad de cultivos agronómicos) están restringidos intermitentemente por diversos factores ambientales que generan un gran número de estreses de tipo abiótico. Dentro de estos, se encuentran la salinidad, la toxicidad por la acumulación de metales pesados, las temperaturas extremas (altas y bajas) y el déficit hídrico provocado por las sequías (Aroca, 2012). De todos estos tipos de estreses abióticos, los que más afectan la producción agrícola a nivel mundial son el déficit hídrico causado por las sequías y la salinidad en los suelos (Kole et al., 2010; Shrivastava & Kumar, 2015). La sequía disminuye el potencial hídrico del suelo, afectando la absorción de agua por parte del sistema radical de las plantas, lo que causa un estrés oxidativo e incrementa la síntesis de especies reactivas de oxígeno (ros, por sus siglas en inglés: reactive oxygen species), que generan daños irreparables en las células vegetales (Vurukonda et al., 2016). De igual manera, esta condición de estrés implica daños en los procesos metabólicos que afectan la fotosíntesis y la asimilación y absorción de nutrientes, lo que produce efectos nocivos sobre el crecimiento y la productividad de los cultivos (Osakabe et al., 2014). Por estas razones, las sequías han ocasionado reducciones significativas en los rendimientos de cultivos como trigo, arroz, maíz y cebada (Miransari, 2014), y se espera que cause graves problemas de crecimiento en las plantas al afectar más del 50 % de las tierras cultivables para 2050 (Kasim et al., 2013). 2022-01-06T14:21:57Z 2022-01-06T14:21:57Z 2021-12-22 2021 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 http://hdl.handle.net/20.500.12324/36980 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 106 130 Abd El-Daim, I. A., Bejai, S., & Meijer, J. (2019). Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Scientific Reports, 9(1), artículo 16282. https://doi.org/10.1038/s41598-019-52567-x Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z. N. B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P., & Hanafi, M. M. (2017). Role of ethylene and the apetala 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environmental and Experimental Botany, 134, 33-44. https://doi.org/10.1016/j.envexpbot.2016.10.015 Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi. org/10.1016/j.micres.2006.04.001 Ahmad, P., Jamsheed, S., Hameed, A., Rasool, S., Sharma, I., Azooz, M. M., & Hasanuzzaman, M. (2014). Chapter 11 - Drought stress induced oxidative damage and antioxidants in plants. En P. Ahmad (ed.), Oxidative damage to plants: Antioxidant networks and signaling (pp. 345-367). Academic Press. https://doi.org/10.1016/ B978-0-12-799963-0.00011-3 Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, artículo 509. https://doi.org/10.3389/fphys.2017.00509 Awasthi, R., Bhandari, K., & Nayyar, H. (2015). Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science, 3, artículo 11. https://doi.org/10.3389/fenvs.2015.00011 Azcón, R., Perálvarez, M. del C., Roldán, A., & Barea, J.-M. (2010). Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59(4), 668-677. https://doi. org/10.1007/s00248-009-9618-5 Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, artículo 273. https://doi.org/10.3389/fpls.2013.00273 Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., & Vile, D. (2013). The pgpr strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytologist, 200(2), 558-569. https://doi.org/10.1111/nph.12383 Bruno, L. B., Karthik, C., Ma, Y., Kadirvelu, K., Freitas, H., & Rajkumar, M. (2020). Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere, 244, artículo 125521. https:// doi.org/10.1016/j.chemosphere.2019.125521 Bulegon, L. G., Guimarães, V. F., Battistus, A. G., Inagaki, A. M., & da Costa, N. V. (2019). Mitigation of drought stress effects on soybean gas exchanges induced by Azospirillum brasilense and plant regulators. Pesquisa Agropecuária Tropical, 49. http://dx.doi. org/10.1590/1983-40632019v4952807 Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32(12), 1.682-1.694. https://doi.org/10.1111/j.1365- 3040.2009.02028.x Ding, Y., Shi, Y., & Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13(4), 544-564. https://doi.org/10.1016/j.molp.2020.02.004 Dubey, S., Shri, M., Gupta, A., Rani, V., & Chakrabarty, D. (2018). Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 16(4), 1.169- 1.192. https://doi.org/10.1007/s10311-018-0741-8 Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1), 335-356. https://doi. org/10.1007/s11104-016-3007-x Fox, T. C., & Guerinot, M. L. (1998). Molecular biology of cation transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 669-696. https://doi.org/10.1146/ annurev.arplant.49.1.669 Gangwar, S., Singh, V. P., Tripathi, D. K., Chauhan, D. K., Prasad, S. M., & Maurya, J. N. (2014). Chapter 10 - Plant responses to metal stress: The emerging role of plant growth hormones in toxicity alleviation. En P. Ahmad, & S. Rasool (eds.), Emerging technologies and management of crop stress tolerance (vol. 2, pp. 215-248). Academic Press. https://doi.org/10.1016/B978-0-12-800875- 1.00010-7 He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 9, artículo 1771. https://doi. org/10.3389/fpls.2018.01771 Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, artículo 872875. https://doi. org/10.1155/2012/872875 Hossain, M. S., & Dietz, K.-J. (2016). Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science, 7, artículo 548. https://doi.org/10.3389/fpls.2016.00548 Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168(4), 183-191. https://doi.org/10.1016/j.micres.2012.12.002 Khan, M. A., Asaf, S., Khan, A. L., Adhikari, A., Jan, R., Ali, S., Imran, M., Kim, K.-M., & Lee, I.-J. (2020). Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biology, 22(5), 850-862. https://doi.org/10.1111/plb.13124 Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE, 14(9), artículo e0222302. https://doi.org/10.1371/journal. pone.0222302 Loupassaki, M. H., Chartzoulakis, K. S., Digalaki, N. B., & Androulakis, I. I. (2002). Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition, 25(11), 2.457-2.482. https://doi.org/10.1081/PLN-120014707 Ma, Y., Oliveira, R. S., Wu, L., Luo, Y., Rajkumar, M., Rocha, I., & Freitas, H. (2015). Inoculation with metal-mobilizing plant-growthpromoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. Journal of Toxicology and Environmental Health, Part A, 78(13-14), 931-944. https://doi.org/10.1080/15287394.2 015.1051205 Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139- 158. https://doi.org/10.1016/j.abb.2005.10.018 Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689-701. https://doi.org/ 10.1080/17429145.2014.902125 Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30-39. https://doi.org/10.1016/j.envexpbot.2013.09.014 Negrão, S., Schmöckel, S. M., & Tester, M. (2016). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. https://doi.org/10.1093/aob/mcw191 Rangel de Souza, A. L. S., De Souza, S. A., De Oliveira, M. V. V., Ferraz, T. M., Figueiredo, F. A. M. M. A., Da Silva, N. D., Rangel, P. L., Panisset, C. R. S., Olivares, F. L., Campostrini, E., & De Souza Filho, G. A. (2016). Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant and Soil, 399(1), 257-270. https://doi.org/10.1007/s11104-015-2672-5 Riemann, M., Dhakarey, R., Hazman, M., Miro, B., Kohli, A., & Nick, P. (2015). Exploring jasmonates in the hormonal network of drought and salinity responses. Frontiers in Plant Science, 6, artículo 1077. https://doi.org/10.3389/fpls.2015.01077 Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (pgpb) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264-272. https://doi.org/10.1016/j.apsoil.2012.01.006 Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669. https://doi. org/10.1111/j.1399-3054.2007.01008.x Shabala, S., & Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2(5), 407-419. https://doi.org/10.1515/BMC.2011.032 Shaharoona, B., Arshad, M., & Zahir, Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology, 42(2), 155-159. https://doi.org/10.1111/j.1472- 765X.2005.01827.x Silva, R., Filgueiras, L., Santos, B., Coelho, M., Silva, M., Estrada- Bonilla, G., Vidal, M., Baldani, J. I., & Meneses, C. (2020). Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. International Journal of Molecular Sciences, 21(1), artículo 333. https://doi.org/10.3390/ijms21010333 Singh, A., & Prasad, S. M. (2011). Reduction of heavy metal load in food chain: Technology assessment. Reviews in Environmental Science and Bio/Technology, 10(3), artículo 199. https://doi. org/10.1007/s11157-011-9241-z Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611-619. https://doi.org/10.1016/j.fct.2009.11.041 Tiwari, G., Duraivadivel, P., Sharma, S., & P., H. (2018). 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports, 8(1), artículo 17513. https://doi.org/10.1038/ s41598-018-35565-3 Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A. A., Ihsan, M., Laiq, M., Ullah, S., Fahad, S., Khan, A., Khan, A. H., Akbar, A., & Yang, X. (2019). Drought tolerance improvement in plants: An endophytic bacterial approach. Applied Microbiology and Biotechnology, 103(18), 7.385-7.397. https://doi.org/10.1007/ s00253-019-10045-4 Ullah, S., & Bano, A. (2015). Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Canadian Journal of Microbiology, 61(4), 1-7. https://doi. org/10.1139/cjm-2014-0668 Yegorenkova, I. V., Konnova, S. A., Sachuk, V. N., & Ignatov, V. V. (2001). Azospirillum brasilense colonisation of wheat roots and the role of lectin–carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant and Soil, 231(2), 275-282. https://doi. org/10.1023/A:1010340700694 Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S., & Paré, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226(4), artículo 839. https://doi.org/10.1007/s00425-007-0530-2 Źróbek-Sokolnik, A. (2012). Temperature stress and responses of plants. En P. Ahmad, & M. N. V. Prasad (eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 113-134). Springer. https://doi.org/10.1007/978-1-4614-0815-4_5 36976 ; Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf application/pdf C.I Tibaitatá Corporación colombiana de investigación agropecuaria - AGROSAVIA Mosquera