Desarrollo y escalamiento de bioplaguicidas

Como se mostró en el capítulo anterior, el desarrollo tecnológico de un bioplaguicida inicia con la etapa de prueba, la cual enmarca una serie de actividades e iniciativas de carácter investigativo y experimental para generar una línea base apropiada para la aplicación de las etapas posteriores. En el presente capítulo se exponen con detalle las etapas de desarrollo, escalamiento piloto, registro y transferencia de la tecnología, que permitirán la implementación exitosa de un bioplaguicida. Inicialmente se debe acopiar, analizar y hacer una primera toma de decisiones sobre los candidatos o aislamientos más apropiados, a partir de la información generada por los estudios de vigilancia tecnológica y prefactibilidad (basados en una posible opción de negocio preliminar). En la etapa de desarrollo se selecciona el tipo de fermentación, se termina el diseño del medio de cultivo, se realizan las pruebas de compatibilidad con agroquímicos, se estandarizan los métodos de control de calidad, se determina la estabilidad en almacenamiento de los prototipos de formulación y su eficacia, y se define el modelo de negocios y el potencial de mercado. En la etapa de escalamiento piloto se optimiza el medio de cultivo, se realiza el escalamiento tanto de la producción masiva por fermentación como de la formulación, se calculan los costos de producción y se implementan estrategias de mercadeo. En la última etapa, se lleva a cabo el registro del producto, la transferencia de la tecnología y la implementación del modelo de negocios. La suma de todas estas actividades implica que el desarrollo tecnológico de un bioplaguicida se considere como una tecnología de mediano plazo (entre 4 y 5 años), que requiere de una inversión de alto costo. La aplicación de las etapas mencionadas requiere de una organización robusta y eficiente, a cargo de un personal multidisciplinario (idóneo para el uso efectivo de recursos logísticos y técnicos; para el manejo de información experimental, económica y legal; y para la gestión administrativa), capaz de abordar todos los retos asociados a la optimización, escalamiento y registro de bioplaguicidas en Colombia.

Saved in:
Bibliographic Details
Main Authors: Díaz García, Andrés, Gómez Álvarez, Martha Isabel, Grijalba Bernal, Erika Paola, Santos Diaz, Adriana Marcela, Cruz Barrera, Fredy Mauricio, León Moreno, Diana Marcela, Alarcón Torres, Erika Andrea, Cotes Prado, Alba Marina
Format: book part biblioteca
Language:spa
Published: ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA 2018
Subjects:Protección de plantas aspectos generales - H01, Bioplaguicidas, Fermentación, Formulaciones, Transferencia de tecnología, Transversal,
Online Access:http://hdl.handle.net/20.500.12324/34077
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-34077
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language spa
topic Protección de plantas aspectos generales - H01
Bioplaguicidas
Fermentación
Formulaciones
Transferencia de tecnología
Transversal
Protección de plantas aspectos generales - H01
Bioplaguicidas
Fermentación
Formulaciones
Transferencia de tecnología
Transversal
spellingShingle Protección de plantas aspectos generales - H01
Bioplaguicidas
Fermentación
Formulaciones
Transferencia de tecnología
Transversal
Protección de plantas aspectos generales - H01
Bioplaguicidas
Fermentación
Formulaciones
Transferencia de tecnología
Transversal
Díaz García, Andrés
Gómez Álvarez, Martha Isabel
Grijalba Bernal, Erika Paola
Santos Diaz, Adriana Marcela
Cruz Barrera, Fredy Mauricio
León Moreno, Diana Marcela
Alarcón Torres, Erika Andrea
Cotes Prado, Alba Marina
Desarrollo y escalamiento de bioplaguicidas
description Como se mostró en el capítulo anterior, el desarrollo tecnológico de un bioplaguicida inicia con la etapa de prueba, la cual enmarca una serie de actividades e iniciativas de carácter investigativo y experimental para generar una línea base apropiada para la aplicación de las etapas posteriores. En el presente capítulo se exponen con detalle las etapas de desarrollo, escalamiento piloto, registro y transferencia de la tecnología, que permitirán la implementación exitosa de un bioplaguicida. Inicialmente se debe acopiar, analizar y hacer una primera toma de decisiones sobre los candidatos o aislamientos más apropiados, a partir de la información generada por los estudios de vigilancia tecnológica y prefactibilidad (basados en una posible opción de negocio preliminar). En la etapa de desarrollo se selecciona el tipo de fermentación, se termina el diseño del medio de cultivo, se realizan las pruebas de compatibilidad con agroquímicos, se estandarizan los métodos de control de calidad, se determina la estabilidad en almacenamiento de los prototipos de formulación y su eficacia, y se define el modelo de negocios y el potencial de mercado. En la etapa de escalamiento piloto se optimiza el medio de cultivo, se realiza el escalamiento tanto de la producción masiva por fermentación como de la formulación, se calculan los costos de producción y se implementan estrategias de mercadeo. En la última etapa, se lleva a cabo el registro del producto, la transferencia de la tecnología y la implementación del modelo de negocios. La suma de todas estas actividades implica que el desarrollo tecnológico de un bioplaguicida se considere como una tecnología de mediano plazo (entre 4 y 5 años), que requiere de una inversión de alto costo. La aplicación de las etapas mencionadas requiere de una organización robusta y eficiente, a cargo de un personal multidisciplinario (idóneo para el uso efectivo de recursos logísticos y técnicos; para el manejo de información experimental, económica y legal; y para la gestión administrativa), capaz de abordar todos los retos asociados a la optimización, escalamiento y registro de bioplaguicidas en Colombia.
format book part
topic_facet Protección de plantas aspectos generales - H01
Bioplaguicidas
Fermentación
Formulaciones
Transferencia de tecnología
Transversal
author Díaz García, Andrés
Gómez Álvarez, Martha Isabel
Grijalba Bernal, Erika Paola
Santos Diaz, Adriana Marcela
Cruz Barrera, Fredy Mauricio
León Moreno, Diana Marcela
Alarcón Torres, Erika Andrea
Cotes Prado, Alba Marina
author_facet Díaz García, Andrés
Gómez Álvarez, Martha Isabel
Grijalba Bernal, Erika Paola
Santos Diaz, Adriana Marcela
Cruz Barrera, Fredy Mauricio
León Moreno, Diana Marcela
Alarcón Torres, Erika Andrea
Cotes Prado, Alba Marina
author_sort Díaz García, Andrés
title Desarrollo y escalamiento de bioplaguicidas
title_short Desarrollo y escalamiento de bioplaguicidas
title_full Desarrollo y escalamiento de bioplaguicidas
title_fullStr Desarrollo y escalamiento de bioplaguicidas
title_full_unstemmed Desarrollo y escalamiento de bioplaguicidas
title_sort desarrollo y escalamiento de bioplaguicidas
publisher ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
publishDate 2018
url http://hdl.handle.net/20.500.12324/34077
work_keys_str_mv AT diazgarciaandres desarrolloyescalamientodebioplaguicidas
AT gomezalvarezmarthaisabel desarrolloyescalamientodebioplaguicidas
AT grijalbabernalerikapaola desarrolloyescalamientodebioplaguicidas
AT santosdiazadrianamarcela desarrolloyescalamientodebioplaguicidas
AT cruzbarrerafredymauricio desarrolloyescalamientodebioplaguicidas
AT leonmorenodianamarcela desarrolloyescalamientodebioplaguicidas
AT alarcontorreserikaandrea desarrolloyescalamientodebioplaguicidas
AT cotespradoalbamarina desarrolloyescalamientodebioplaguicidas
AT diazgarciaandres developmentandscalingofbiopesticides
AT gomezalvarezmarthaisabel developmentandscalingofbiopesticides
AT grijalbabernalerikapaola developmentandscalingofbiopesticides
AT santosdiazadrianamarcela developmentandscalingofbiopesticides
AT cruzbarrerafredymauricio developmentandscalingofbiopesticides
AT leonmorenodianamarcela developmentandscalingofbiopesticides
AT alarcontorreserikaandrea developmentandscalingofbiopesticides
AT cotespradoalbamarina developmentandscalingofbiopesticides
_version_ 1802819353599541248
spelling dig-bac-20.500.12324-340772024-06-14T21:17:35Z Desarrollo y escalamiento de bioplaguicidas Development and scaling of biopesticides Díaz García, Andrés Gómez Álvarez, Martha Isabel Grijalba Bernal, Erika Paola Santos Diaz, Adriana Marcela Cruz Barrera, Fredy Mauricio León Moreno, Diana Marcela Alarcón Torres, Erika Andrea Cotes Prado, Alba Marina Protección de plantas aspectos generales - H01 Bioplaguicidas Fermentación Formulaciones Transferencia de tecnología Transversal Como se mostró en el capítulo anterior, el desarrollo tecnológico de un bioplaguicida inicia con la etapa de prueba, la cual enmarca una serie de actividades e iniciativas de carácter investigativo y experimental para generar una línea base apropiada para la aplicación de las etapas posteriores. En el presente capítulo se exponen con detalle las etapas de desarrollo, escalamiento piloto, registro y transferencia de la tecnología, que permitirán la implementación exitosa de un bioplaguicida. Inicialmente se debe acopiar, analizar y hacer una primera toma de decisiones sobre los candidatos o aislamientos más apropiados, a partir de la información generada por los estudios de vigilancia tecnológica y prefactibilidad (basados en una posible opción de negocio preliminar). En la etapa de desarrollo se selecciona el tipo de fermentación, se termina el diseño del medio de cultivo, se realizan las pruebas de compatibilidad con agroquímicos, se estandarizan los métodos de control de calidad, se determina la estabilidad en almacenamiento de los prototipos de formulación y su eficacia, y se define el modelo de negocios y el potencial de mercado. En la etapa de escalamiento piloto se optimiza el medio de cultivo, se realiza el escalamiento tanto de la producción masiva por fermentación como de la formulación, se calculan los costos de producción y se implementan estrategias de mercadeo. En la última etapa, se lleva a cabo el registro del producto, la transferencia de la tecnología y la implementación del modelo de negocios. La suma de todas estas actividades implica que el desarrollo tecnológico de un bioplaguicida se considere como una tecnología de mediano plazo (entre 4 y 5 años), que requiere de una inversión de alto costo. La aplicación de las etapas mencionadas requiere de una organización robusta y eficiente, a cargo de un personal multidisciplinario (idóneo para el uso efectivo de recursos logísticos y técnicos; para el manejo de información experimental, económica y legal; y para la gestión administrativa), capaz de abordar todos los retos asociados a la optimización, escalamiento y registro de bioplaguicidas en Colombia. 2018-12-04T15:57:27Z 2018-12-04T15:57:27Z 2018 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 978-958-740-254-4 (e-book) http://hdl.handle.net/20.500.12324/34077 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 628 691 Abadias, M., Usall, J., Teixidó, N., & Viñas, I. (2003). Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology, 93(4), 436-442. doi:10.1094/PHYTO.2003.93.4.436. Abot, A., Moscardi, F., Fuxa, J., Sosa-Gómez, D., & Richter, A. (1996). Development of resistance by Anticarsia gemmatalis from Brazil and the United States to a nuclear Polyhedrosis virus under laboratory selection pressure. Biological Control, 7(1), 126-130. doi:10.1006/ bcon.1996.0075. Adinarayana, K., & Ellaiah, P. (2002). Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. Journal of Pharmacy & Pharmaceutical Sciences, 5(3), 272-278. Aggarwal, A., & Singh, H. (2005). Optimization of machining techniques - A retrospective and literature review. Sadhana, 30(6), 699-711. Aguilera, A. A. (2014). Vigilancia Tecnológica. Recuperado de http://huila.gov.co/documentos/V/vigilancia_ tecnologica_pioridades.pdf Al-Hamdani, A., & Cooke, R. (1987). Effects of water potential on accumulation and exudation of carbohydrates and glycerol during sclerotium formation and myceliogenic germination in Sclerotinia sclerotiorum. Transactions of the British Mycological Society, 89(1), 51-60. doi:10.1016/ S0007-1536(87)80057-8. Aldasoro Alustiza, J. C., Cantonnet Jordi, M. L., & Cilleruelo Carrasco, E. (2012). La vigilancia tecnológica y la inteligencia competitiva en los estándares de gestión de la calidad en I+D+i. Recuperado de http://adingor.es/ congresos/web/uploads/cio/cio2012/SP_04_Gestion_ Innovacion_Tecnolo g ica_y_Organiz ativa/1162- 1168.pdf. Álvarez, F., Castro, M., Príncipe, A., Borioli, G., Fischer, S., Mori, G., & Jofre, E. (2012). The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. Journal of Applied Microbiology, 112(1), 159-174. doi:10.1111/j.1365-2672.2011.05182.x. Alves, S. B., & Lecuona, R. E. (1998). Epizootiologia aplicada ao controle microbiano de insetos. En S. B. Alves (Ed.), Controle microbiano de insetos (pp. 97-170). Piracicaba, Brasil: Fundação de Estudos Agrários Luiz de Queiroz (FEALQ). Alves, S. B., Moino, A., & Almeida, J. E. M. (1998). Produtos fitossanitários e entomopatógenos. En S. B. Alves (Ed.), Controle microbiano de insetos (pp. 97-170). Piracicaba, Brasil: Fundação de Estudos Agrários Luiz de Queiroz (FEALQ). Alves, L. F. A, Alves, S. B., Pereira, R. M., & Capalbo, D. M. F. (1997). Production of Bacillus thuringiensis Berliner var. kurstaki grown in alternative media. Biocontrol Science and Technology, 7(3), 377-383. doi:10.1080/09583159730785. Amani, H., Mehrnia, M. R., Sarrafzadeh, M. H., Haghighi, M., & Soudi, M. R. (2010). Scale up and application of biosurfactant from Bacillus subtilis in enhanced oil recovery. Applied Biochemistry and Biotechnology, 162(2), 510-523. Anaya-Durand, A., & Pedroza-Flores, H. (2008). Escalamiento, el arte de la ingeniería química: Plantas piloto, el paso entre el huevo y la gallina. Tecnología, Ciencia, Educación, 23(1), 31-39. Arora, N. K., Mehnaz, S., & Balestrini, R. (Eds.). (2016). Bioformulations: For sustainable agriculture. Nueva Delhi, India: Springer. Aulton, M. E. (2004). Farmacia: la ciencia del diseño de las formas farmacéuticas. Madrid, España: Elsevier Auria, R., Ortiz, I., Villegas, E., & Revah, S. (1995). Influence of growth and high mould concentration on the pressure drop in solid state fermentations. Process Biochemistry, 30(8), 751-756. doi:10.1016/0032-9592(95)00004-6. Bardin, M., Fargues, J., & Nicot, P. (2008). Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biological Control, 46(3), 476-483. doi:10.1016/j.biocontrol.2008.05.012. Barrera, G., Simón, O., Caballero, P., Cuartas, P., Gómez, J., & Villamizar, L. (2012). Caracterización morfólogica, genética y biológica de tres aislamientos colombianos de nucleopoliedrovirus de Spodoptera frugiperda. En L. Villamizar, J. Guevara, C. Espinel, M. Gómez, J. Gómez, P. Cuartas, … A. M. Cotes, Desarrollo de un bioplaguicida a base de nucleopoliedrovirus para el control del gusano cogollero del maíz Spodoptera frugiperda (pp. 21-36). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (CORPOICA). Batista Filho, A., Almeida, J. E., & Lamas, C. (2001). Effect of thiamethoxam on entomopathogenic microorganisms. Neotropical Entomology, 30(3), 437-447. doi:10.1590/ S1519-566X2001000300017. Bagwan, N. B. (2010). Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integrated management of soil borne diseases of soybean [Glycine max (L.) Merrill]. International Journal of Plant Protection, 3(2), 206-209. Recuperado de http://www.researchjournal.co.in/ online/IJPP/IJPP-3-2-2010.htm. Bhagat, P. (1990). An introduction to neural nets. Chemical Engineering Progress, 86(8), 55-60. Bhanu Prakash, G. V. S., Padmaja, V., & Siva Kiran, R. R. (2008). Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresource Technology, 99(6), 1530-1537. doi:10.1016/j. biortech.2007.04.031 Box, G. & Wilson, K. (1951). On the experimental attainment of optimum condition. Journal of the Royal Statistical Society, 13(1), 270-310. Boyetchko, S., Rosskopf, E., Caesar, A., & Charudattan, R. (2002). Biological weed control with pathogens: search for candidates to applications. Applied Mycology and Biotechnology, 2, 239-274. Briese, D. T. (1986). Insect resistance to baculoviruses. En E. F. A. Granados (Ed.), The biology of baculoviruses (pp. 89- 108). Boca Raton, EE. UU.: crc Press. Bruck, D. J. (2009). Impact of fungicides on Metarhizium anisopliae in the rhizosphere, bulk soil and in vitro. BioControl, 54(4), 597-606. Recuperado de https://link. springer.com/article/10.1007/s10526-009-9213-1. Bruckner, S., Albrecht, A., Petersen, B., & Kreyenschmidt, J. (2013). A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains. Food Control, 29(2), 451-460. doi:10.1016/j. foodcont.2012.05.048. Burges, H. D. (1998). Formulation of mycoinsecticides. En Formulation of microbial biopesticides (pp. 131-185). Dordrecht, Holanda: Springer. doi:10.1007/978-94- 011-4926-6. Caldeira, A. T., Arteiro, J. M., Roseiro, J. C., Neves, J., & Vicente, H. (2011). An artificial intelligence approach to Bacillus amyloliquefaciens ccmi 1051 cultures: Application to the production of anti-fungal compounds. Bioresource Technology, 102(2), 1496-1502. doi:10.1016/j.biortech. 2010.07.080. Chaparro, A., Cardona, C. A., Orrego, C. E., Yépes, F. C., Serna, L., & Ospina, S. A. (2013). Plan Global de Desarrollo 2010-2012. Prospectiva UN - Agendas de conocimiento. Agenda: Biotecnología. Recuperado de https://goo.gl/ upvqBo. Charles, J.-F., Nielson-LeRoux, C., & Delecluse, A. (1996). Bacillus sphaericus toxins: molecular biology and mode of action. Annual Review of Entomology, 41, 451-472. doi:10.1146/annurev.en.41.010196.002315. Chen, L., Yang, X., Raza, W., Luo, J., Zhang, F., & Shen, Q. (2011). Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresource Technology, 102(4), 3900-3910. doi:10.1016/j. biortech.2010.11.126. Chen, X., Li, Y., Du, G., & Chen, J. (2005). Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solidstate fermentation. World Journal of Microbiology and Biotechnology, 21(4), 593-599. Chen, Z.-M., Li, Q., Liu, H.-M., Yu, N., Xie, T.-J., Yang, M.- Y., ... Chen, X.-D. (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology, 85(5), 1353-1360. doi:10.1007/s00253-009-2162-x. Chong-Rodríguez, M. J., Maldonado-Blanco, M. G., Hernández-Escareño, J. J., Galán-Wong, L. J., & SandovalCoronado, C. F. (2011). Study of Beauveria bassiana growth, blastospore yield, desiccation-tolerance, viability and toxic activity using different liquid media. African Journal of Biotechnology, 10(30), 5736-5742. doi:10.5897/ AJB10.2264. Chung, S., & Kim, S.-D., (2005). Biological control of phytopathogenic fungi by Bacillus amyloliquefaciens 7079; suppression rates are better than popular chemical fungicides. Journal of Microbiology and Biotechnology, 15(5), 1011-1021. Coca, P., García, A., Santos, D., & Fernández, A. (2010). Guía de vigilancia estratégica proyecto Centinela: vigilancia estratégica al alcance de las empresas asturianas. Recuperado de https://goo.gl/Ms4J1C. Copping, L. (2009). The manual of biocontrol agents, the biopesticide manual (4.a edición). Hampshire, Reino Unido: The British Crop Protection Council. Corpoica (2015). Guía ampliada para la pertinencia del mercado. Recuperado de http://intranet.corpoica.org.co/ GestionOrganizacional/_layouts/15/OSSSearchResults. aspx?k=guia%20ampliada&cs=Esta%20lista&u= http%3A%2F%2Fintranet.corpoica.org.co%2FGestionOr ganizacional%2FDocumentacin. CPL Business Consultants. (2006). A how to do it guide to biopesticides with historical examples. Recuperado de https://goo.gl/wr3gjt. Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223(4637), 701-704. doi:10.1126/science.223.4637.701. Cruz, R. D. (2013, noviembre). Vigilancia tecnológica e innovación. Documento presentado en Foro Académico Nacional “La competitividad para enfrentar mercados globales”, Medellín, Colombia. Cuthbertson, A. G., Walters, K. F., & Deppe, C. (2005). Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci. Mycopathologia, 160(1), 35-41. doi:10.1007/s11046-005-6835-4. Desgranges, C., Vergoignan, C., Léréec, A., Riba, G., & Durand, A. (1993). Use of solid state fermentation to produce Beauveria bassiana for the biological control of european corn borer. Biotechnology Advances, 11(3), 577- 587. doi:10.1016/0734-9750(93)90026-J. Dhanya, M. K., Anjumol, K. B., Murugan, M., & Deepthy, K. B. (2016). Compatibility of Trichoderma viride and Pseudomonas fluorescens with plant protection chemicals and fertilizers in cardamom. Journal of Tropical Agriculture, 54(2), 129-135. Recuperado de http://jtropag.kau.in/ index.php/ojs2/article/view/380. Díaz, A., Flórez, J., & Cotes, A. M. (2005). Optimización de un medio de cultivo para la producción de la levadura Pichia onychis (Lv027). Revista Colombiana de Biotecnología, 7(1), 51-58. Díaz, A., García, J., & Mejía, C. (2015). Development and application of a scale up strategy for the production of native strain of Bacillus amyloliquefaciens. En A. T. Caldeira, A. Candeias, A. Pereira, & M. Rosario (Eds.), MicroBiotec 15 Congress of Biotechnology and Microbiology. Évora, Portugal: Greca. Díaz, A., García, J., & Zapata-Narváez, J. (2015). Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology, 6(4), 302-310. doi:10.4236/abb.2015.64029. Doelle, H. W., Mitchell, D. A., & Rolz, C. E. (1992). Solid substrate cultivation. Londres, Inglaterra: Springer. Dutta, P., Battacharyya, P. N., Sarmah, S. R., Madhab, M., Sandilya, S. P., Gogoi, D., … Pathak, S. K. (2016). In vitro studies on the compatibility assessment of certain agrochemicals with microbial biopesticides used in tea [Camelia sinensis (L.) O. Kuntze] of Assam, Northeast India. Two and a Bud, 63(1), 13-16. Recuperado de http:// www.worldcat.org/title/two-and-a-bud/oclc/1772745. Ejiofor, A. O. (1991). Production of Bacillus thuringiensis serotype H-14 as bioinsecticide using a mixture of ‘spent’ brewer’s yeast and waste cassava starch as the fermentation medium. Discovery Innovation, 3(2), 85-88. Recuperado de https://www.ajol.info/index.php/dai. Elad, Y. & Stewart, A. (2007). Microbial control of Botrytis spp. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: biology, pathology and control (pp. 223- 241). Dordrecht, Holanda: Springer. Elzein, A., Kroschel, J., & Müller-stöver, D. (2004). Optimization of storage conditions for adequate shelflife of “pesta” formulation of Fusarium oxysporum “foxy 2”, a potential mycoherbicide for Striga: Effects of temperature, granule size and water activity. Biocontrol Science and Technology, 14(6), 545-559. doi:10.1080/09 583150410001682278. Ennouri, K., Ben Hassen, H., & Zouari, N. (2013). Optimization of bioinsecticides overproduction by Bacillus thuringiensis subp. kurstaki using linear regression. Polish Journal of Microbiology, 62(3), 287-293. European and Mediterranean Plant Protection Organization (eppo). (1999). Design and analysis of efficacy evaluation trials. Bulletin OEPP/EPPO Bulletin, 42(3), 297-317. European and Mediterranean Plant Protection Organization (eppo). (2001). Principles of acceptable efficacy. Bulletin OEPP/EPPO Bulletin, 31(2), 331-336. doi:10.1111/ j.1365-2338.2001.tb01003.x European and Mediterranean Plant Protection Organization (eppo). (2004a). Introduction to the efficacy evaluation of plant protection products. Bulletin OEPP/EPPO Bulletin, 34(1), 25-29. doi:10.1111/j.1365-2338.2004.00694.x. European and Mediterranean Plant Protection Organization (eppo). 2004b. Minimum effective dose. Bulletin OEPP/ EPPO Bulletin, 34(1), 35-36. doi:10.1111/j.1365- 2338.2004.00696.x. European and Mediterranean Plant Protection Organization (eppo). 2004c. Number of efficacy trials. Bulletin OEPP/ EPPO Bulletin, 34(1), 37-39. European and Mediterranean Plant Protection Organization (eppo). (2014). Principles of acceptable efficacy. Bulletin OEPP/EPPO Bulletin, 44(3), 274-277. doi:10.1111/ epp.12135. European and Mediterranean Plant Protection Organization (EPPO). (2017). Good Experimental Practice (gep). Recuperado de https://www.eppo.int/PPPRODUCTS/ gep/good_experimental_practice.htm. Faria, M., Hotchkiss, J. H., Hajek, A. E., & Wraight, S. P. (2010). Debilitation in conidia of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae and implication with respect to viability determinations and mycopesticide quality assessments. Journal of Invertebrate Pathology, 105(1), 74-83. doi:10.1016/j.jip.2010.05.011. Feng, K.-C., Liu, B.-L., & Tzeng, Y.-M. (2002). Morphological characterization and germination of aerial and submerged spores of the entomopathogenic fungus Verticillium lecanii. World Journal of Microbiology and Biotechnology, 18(3), 217-224. Feng, K.-C., Liu, B.-L., & Tzeng, Y.-M. (2002). Morphological characterization and germination of aerial and submerged spores of the entomopathogenic fungus Verticillium lecanii. World Journal of Microbiology and Biotechnology, 18(3), 217-224. Feng, K. C., Liu, B. L., & Tzeng, Y. M. (2000). Verticillium lecanii spore production in solid-state and liquid-state fermentations. Bioprocess Engineering, 23(1), 25-29. Ferreira, S. C., Bruns, R., Ferreira, H., Matos, G., David, J., Brandao, G., ... Souza, A. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. doi:10.1016/j. aca.2007.07.011. Fisher, R. A. (1992). The arrangement of field experiments. En S. Kotz & N. L. Johnson (Eds.), Breakthroughs in statistics (Vol. 2, pp. 82-91). Nueve York, EE. UU.: Springer Food and Agriculture Organization of the United Nations (fao). (1998). 4. Costos de producción. Recuperado de http://www.fao.org/docrep/003/v8490s/v8490s06. htm#TopOfPage. Food and Agriculture Organization of the United Nations (fao). (2005). Manejo integrado de plagas en zonas extensas. Recuperado de http://www.fao.org/ag/esp/ revista/0506sp1.htm. Foster, J. W., & Katz, E. (1981). Control of actinomycin D biosynthesis in Streptomyces parvullus: regulation of tryptophan oxygenase activity. Journal of Bacteriology, 148(2), 670-677. Friesen, T. J., Holloway, G., Hill, G. A., & Pugsley, T. S. (2006). Effect of conditions and protectants on the survival of Penicillium bilaiae during storage. Biocontrol Science and Technology, 16(1), 89-98. doi:10.1080/09583150500258263. Gaugler, R., Grewal, P., Kaya, H. K., & Smith-Fiola, D. (2000). Quality assessment of commercially produced entomopathogenic nematodes. Biological Control, 17(1), 100-109. doi:10.1006/bcon.1999.0768. Gervais, P., & Molin, P. (2003). The role of water in solidstate fermentation. Biochemical Engineering Journal, 13(2- 3), 85-101. doi:10.1016/S1369-703X(02)00122-5. Glare, T. R., & Moran-Diez, M. E. (2016). MicrobialBased Biopesticides: Methods and Protocols. Nueva York, EE. UU.: Springer. Gómez, M. I., Moreno, C. A., Cotes, A. M., Smith, A., Villamizar, L. F., Beltrán, C., … Uribe. L. A. (2010). Desarrollo y ajuste de los procesos tecnológicos requeridos para el registro de dos formulaciones a base de Trichoderma koningiopsis (Th003) para los cultivos de tomate (Lycopersicon esculentum) y lechuga (Lactuca sativa) [Informe técnico final]. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (CORPOICA). Gómez, M. I., Díaz, A., & Cruz, F. M. (2011). Escalamiento de la producción del bioplaguicida a base de Trichoderma koningiopsis Th003. En M. I. Gómez, & A. M. Santos (Eds.), Uso de Trichoderma koningiopsis Th003 para el control de fitopatógenos en hortalizas (pp. 27-42). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (CORPOICA). Gómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829-846. doi:10.1080/09583157.2013.802288. González, R., Islas, L., Obregón, A. M., Escalante, L., & Sánchez, S. (1995). Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. Journal of Antibiotics, 48(6), 479-483. doi:10.7164/ antibiotics.48.479. Grijalba Bernal, E. P., Gómez Álvarez, M. I., & Zuluaga Mogollón, M. V. (2014). Compatibilidad in vitro de Isaria fumosorosea (Wize) Brown y Smith (Hypocreales: Clavicipitaceae) con plaguicidas comerciales. Acta Agronómica, 63(1), 48-54. doi:10.15446/acag.v63n1.37895. Grijalba, E. P., Villamizar, L. R., & Cotes, A. M. P. (2009). Evaluation of the stability of Paecilomyces sp. and Beauveria bassiana under ultraviolet radiation. Revista Colombiana de Entomología 35(1), 1-6. Gupte, M., & Kulkarni, P. (2003). A study of antifungal antibiotic production by Thermomonospora sp. mtcc 3340 using full factorial design. Journal of Chemical Technology and Biotechnology, 78(6), 605-610. Hallsworth, J., & Magan, N. (1994a). Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Letters in Applied Microbiology, 18(1), 8-11. doi:10.1111/ j.1472-765X.1994.tb00785.x. Hallsworth, J. E., & Magan, N. (1994b). Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology, 140(10), 2705-2713. Harada, Y., Sakata, K., Sato, S., & Takayama, S. (2014). Chapter 1. Fermentation Pilot Plant. En C. M. Todaro & H. C. Vogel (Eds.), Fermentation and Biochemical Engineering Handbook (3.a Ed., pp. 3-15). Boston, EE. UU.: William Andrew Publishing. Harbert, A. P. (2012). Mind map and demonstration of the quicklook methodology for technology commercialization (tesis de maestría). University of Texas at Ausin, Texas, United States. Harman, G., Jin, X., Stasz, T., Peruzzotti, G., Leopold, A., & Taylor, A. (1991). Production of conidial biomass of Trichoderma harzianum for biological control. Biological Control, 1(1), 23-28. doi:10.1016/1049-9644(91)90097-J Hasanain, A. M. (2017). Development of a cheap media for Bacillus thuringiensis growth. International Journal of Biotechnology and Bioengineering, 3(6), 216-223. doi:10.25141/2475-3432-2017-6.0216. Hölker, U., & Lenz, J. (2005). Solid-state fermentation — are there any biotechnological advantages? Current Opinion in Microbiology, 8(3), 301-306. doi:10.1016/j. mib.2005.04.006. Huang, X.-F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92(4), 267-275. doi:10.1139/cjb2013-0225. Hubbard, D. W. (1987). Scaleup strategies for bioreactors containing non-Newtonian Broths. Annals of the New York Academy of Sciences, 506, 600-607. Huynh-Ba, K. (2008). Handbook of stability testing in pharmaceutical development: regulations, methodologies, and best practices. Nueva York, EE. UU.: Springer Science & Business Media. Hynes, R. K., & Boyetchko, S. M. (2006). Research initiatives in the art and science of biopesticide formulations. Soil Biology and Biochemistry, 38(4), 845-849. doi:10.1016/j. soilbio.2005.07.003. Ibrahim, L., Butt, T. M., & Jenkinson, P. (2002). Effect of artificial culture media on germination, growth, virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycological Research, 106(6), 705-715. doi:10.1017/S0953756202006044. Instituto Colombiano Agropecuario (ICA). (4 de febrero de 2011). Por medio de la cual se establecen los requisitos para el registro de departamentos técnicos de ensayos de eficacia, productores e importadores de bioinsumos de uso agrícola y se dictan otras disposiciones. [Resolución 000698 de 2011]. Recuperado de https://www.ica.gov.co/getattachment/225bd110-d1c4- 47d7-9cf3-43745201e39a/2011R698.aspx. Instituto Vasco de Estadística (ESTAT). (s. f.). Investigación científica y desarrollo tecnológico (I+D). Recuperado de http://www.eustat.eus/documentos/opt_0/tema_426/ elem_1698/definicion.html. Islam, M. T., & Omar, D. B. (2012). Combined effect of Beauveria bassiana with neem on virulence of insect in case of two application approaches. Journal of Animal & Plant Sciences. 22(1), 77-82. http://www.thejaps.org.pk/. Jackson, M. A. (1997). Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. Journal of Industrial Microbiology and Biotechnology, 19(3), 180-187. Jackson, M. A., & Schisler, D. A. (1992). The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Applied and Environmental Microbiology, 58(7), 2260-2265. Jackson, M. A., Cliquet, S., & Iten, L. B. (2010). Media and fermentation processes for the rapid production of high concentrations of stable blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Biocontrol Science and Technology, 13(1), 23-33. http://dx.doi.org/10.1080/09 58315021000054368. Janmaat, A. F., & Myers, J. (2003). Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proceedings of the Royal Society of London B: Biological Sciences, 270(1530), 2263-2270. doi:10.1098/rspb.2003.2497. Jenkins, N. E., & Grzywacz, D. (2000). Quality control of fungal and viral biocontrol agents-assurance of product performance. Biocontrol Science and Technology, 10(6), 753-777. doi:10.1080/09583150020011717. Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J., & Lomer, C. J. (1998). Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News and Information, 19(1), 21N-31N. Jin, X., Harman, G. E., & Taylor, A. G. (1991). Conidial biomass and desiccation tolerance of Trichoderma harzianum produced at different medium water potentials. Biological Control, 1(3), 237-243. doi:10.1016/1049- 9644(91)90072-8. Karnataka, J. (2007). Effect of agrochemicals on growth and sporulation of Metarhizium anisopliae (Metschnikoff ) Sorokin. Karnataka Journal of Agricultural Sciences, 20(2), 410-413. Kennedy, M., & Krouse, D. (1999). Strategies for improving fermentation medium performance: a review. Journal of Industrial Microbiology and Biotechnology, 23(6), 456-475. Keskin Gündoğdu, T., Deniz, İ., Çalışkan, G., Şahin, E. S., & Azbar, N. (2016). Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology, 36(2), 368-388. doi:10.3109/07388551.2 014.973014. Kim, C. H., Rao, K. J., Youn, D. J., & Rhee, S. K. (2003). Scale-up of recombinant hirudin production from Saccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 8(5), 303-305. https://link.springer.com/ article/10.1007/BF02949222. Kinay, P., & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45(3), 433-440. doi:10.1016/j.biocontrol.2008.03.001. Kshirsagar, P. R., Suttar, R., Nilegaonkar, S. S., Pradhan, S., & Kanekar, P. P. (2013). Scale up production of polyhydroxyalkanoate (pha) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis mcm B-1027. Journal of Biochemical Technology, 4(1), 512-517. Kubilay, M., & Gökce, A. (2004). Effects of selected pesticides used against glasshouse tomato pests on colony growth and conidial germination of Paecilomyces fumosoroseus. Biological Control, Kumar, G., & Ramya, V. (2014). Compatibility of agrochemical with entomopathogenic fungi Paecilomyces lilacinus, a biological nematicide. Journal of Global Biosciences, 3(2), 406-410. Kumar, S., Thakur, M., & Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research, 9(53), 3838-3852. Lacey, L. A., Headrick, H. L., & Arthurs, S. P. (2008). Effect of temperature on long-term storage of codling moth granulovirus formulations. Journal of Economic Entomology, 101(2), 288-294. doi:10.1603/0022- 0493(2008)101[288:EOTOLS]2.0.CO;2. Lane, B. S., Trinci, A. P. J., & Gillespie, A. T. (1991). Endogenous reserves and survival of blastospores of Beauveria bassiana harvested from carbon- and nitrogenlimited batch cultures. Mycological Research, 95(7), 821- 828. doi:10.1016/S0953-7562(09)80045-2. Larroche, C., Theodore, M., & Gros, J. B. (1992). Growth and sporulation behaviour of Penicillium roqueforti in solid substrate fermentation: effect of the hydric parameters of the medium. Applied Microbiology and Biotechnology, 38(2), 183-187. doi:10.1007/BF00174465. Leland, J. E., Mullins, D. E., Vaughan, L. J., & Warren, H. L. (2005). Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, Part 1: Comparison of cell wall characteristics and drying stability among three spore types. Biocontrol Science and Technology, 15(4), 379-392. doi:10.1080/09583150400016928. Leymone, J. P. (2016). Los nuevos pasos del Laboratorio Farroupilha Lallemand. New AG International (octubre/ noviembre), 32-33. Li, Y.-Q., Song, K., Li, Y.-C., & Chen, J. (2016). Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation. Journal of Zhejiang University-Science B, 17(8), 619-627. Lonsane, B. K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., … Krishnaiaha, M. M. (1992). Scale up strategies for solid state fermentation systems. Process Biochemistry, 27(5), 259-273. Recuperado de https://www.sciencedirect. com/science/article/pii/003295929285011P. López, M. E., González, N., Osobampo, S., Cano, A., & Gálvez, R. (2013). Estudio Técnico. Elemento indispen-sable en la evaluación de proyectos de inversión. Recuperado de http://moodle2.unid.edu.mx/dts_cursos_mdl/lic/ET/ EP/S05/EP05_Lectura.pdf. Marcus, M. S. (2009). Perspectives and challenges for biopesticide industry. Ponencai presentada en 4th Annual Biocontrol Industry Meeting (abim), Lucerne, Switzerland. Marín-Cervantes, M. C., Matsumoto, Y., Ramírez-Coutiño, L., Rocha-Pino, Z., Viniegra, G., & Shirai, K. (2008). Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinases. Process Biochemistry, 43(1), 24-32. doi:10.1016/j.procbio.2007.10.009. Mark, G. L., Morrissey, J. P., Higgins, P., & O'Gara, F. (2006). Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiology Ecology, 56(2), 167-177. Márquez, J. (2010). Innovación en modelos de negocio: la metodología de Osterwalder en la práctica. Revista MBA Eafit, 1, 30-47. Marvier, M., McCreedy, C., Regetz, J., & Kareiva, P. (2007). A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science, 316(5830), 1475-1477. doi:10.1126/science.1139208. Mascarin, G. M., Jackson, M. A., Kobori, N. N., Behle, R. W., & Delalibera Júnior, Í. (2015). Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. Journal of Invertebrathe Pathology, 127, 11-20. doi:10.1016/j.jip.2014.12.001. McGaughey, W. H. (1985). Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 229(4709), 193-196. Mead, R., Curnow, R. N., & Hasted, A. M. (2002). Statistical methods in agriculture and experimental biology. Boca Raton, EE. UU.: crc Press. Melo, A., Ariza, P., Lissbrant, S., & Tofiño, A. (2015). Evaluación de agroquímicos-bioinsumos para el manejo sostenible del fríjol en la costa Caribe colombiana. Agronomía Colombiana, 33(2), 203-211. doi:10.15446/ agron.colomb.v33n2.49858. Miranda, J. J. M. (2005). El ciclo del proyecto. Gestión de proyectos: identificación, formulación, evaluación financieraeconómica-social-ambiental. Bogotá, Colombia: MM Editores. Muñiz-Paredes, F., Miranda-Hernández, F., & Loera, O. (2017). Production of conidia by entomopathogenic fungi: from inoculants to final quality tests. World Journal of Microbiology and Biotechnology, 33(3), 57. doi:10.1007/ s11274-017-2229-2. Neves, P., Hirose, E., Chujo, P. T., & Moino, A. (2001). Compatibility of entomopathogenic fungi with neonicotinoidinsecticides. Neotropical Entomology, 30(2), 263-268. doi:10.1590/S1519-566X2001000200009. Nopharatana, M., Howes, T., & Mitchell, D. A. (1998). Modelling fungal growth on surfaces. Biotechnology Techniques, 12(4), 313-318. doi:10.10 23/A:1008810500243. Oliveira, C. N., Oliveira, P. M., & Sueki, L. (2003). Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Scientia Agricola, 60(4), 663-667. doi:10.1590/S0103- 90162003000400009. Organisation for Economic Co-operation and Development (OECD). (2001). Guidance for industry data submissions on plant protection products and their active substances (Dossier guidance). Recuperado de https://www.oecd. org/chemicalsafety/pesticides-biocides/34870180.pdf. Osterwalder, A. (2004). The business model ontology: A proposition in a design science approach (tesis de doctorado). École des Hautes Études Comerciales de l’Université de Lausanne, Lausana, Suiza. Osterwalder, A., & Pigneur, Y. (2010). Business model generation: a handbook for visionaries, game changers, and challengers. New Jersey, EE. UU.: John Wiley & Sons. Observatorio Virtual de Transferencia Tecnológica (OVTT). (s. f.). Vigilancia tecnológica e inteligencia. Recuperado de http://www.ovtt.org/vigilancia-tecnologica. Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 81-84. doi:10.1016/S1369- 703X(02)00121-3. Pandey, A., Fernandes, M., & Larroche, C. (EDS.). (2008). Current developments in solid-state fermentation. Nueva Delhi, India: Springer. Paul, B., Paul, S., & Khan, M. A. (2011). A potential economical substrate for large-scale production of Bacillus thuringiensis var. kurstaki for caterpillar control. Biocontrol Science and Technology, 21(11), 1363-1368. do i:10.1080/09583157.2011.605942. Pavone, D., Díaz, M., Trujillo, L., & Dorta, B. (2009). A granular formulation of Nomuraea rileyi Farlow (Samson) for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae). Interciencia, 34(2), 130-134. Recuperado de http:// www.scielo.org.ve/scielo.php?pid=S0378-1844200 9000200011&script=sci_abstract. Pavone, D., & Dorta, B. (2010). Efecto de agroquímicos sobre el desarrollo del hongo entomopatógeno Nomuraea rileyi y su virulencia sobre Spodoptera frugiperda. Bioagro, 22(2), 1-11. Pest Management Regulatory Agency (PMRA). (1993). Assessment of the economic benefits of pesticides. Recuperado de http://publications.gc.ca/collections/Collection/H113- 3-18E.pdf. Pest Management Regulatory Agency (PMRA). (2003). Efficacy guidelines for plant protection products. Recuperado de https://goo.gl/r1TkFy. Petlamul, W., & Prasertsan, P. (2014). Spore production of entomopathogenic fungus Beauveria bassiana bnbcrc for biocontrol: Response surface optimization of medium using decanter cake from palm oil mill. Journal of the Korean Society for Applied Biological Chemistry, 57(2), 201-208. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305-325. doi:10.1093/biomet/33.4.305. PMG. (2017). Mercado de clientes agrícolas y desafío de proveedores y distribuidores. Recuperado de https://www. pmgchile.com/mercado-de-clientes-agricolas-y-desafiode-proveedores-y-distribuidores/. Poopathi, S., Kumar, K. A., Kabilan, L., & Sekar, V. (2002). Development of low-cost media for the culture of mosquito larvicides, Bacillus sphaericus and Bacillus thuringiensis serovar. israelensis. World Journal of Microbiology and Biotechnology, 18(3), 209-216. doi:10.1023/A:1014937311839. Posada-Uribe, L. F., Romero-Tabárez, M., & VillegasEscobar, V. (2015). Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess Biosystems Engineering, 38(10), 1879-1888. doi:10.1007/s00449-015-1428-1. Qiu, J., Song, F., Qiu, Y., Li, X., & Guan, X. (2013). Optimization of the medium composition of a biphasic production system for mycelial growth and spore production of Aschersonia placenta using response surface methodology. Journal of Invertebrate Pathology, 112(2), 108-115. doi:10.1016/j.jip.2012.10.010. Qu, L., Ren, L.-J., & Huang, H. (2013). Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochemical Engineering Journal, 77(15), 82-87. doi:10.1016/j.bej.2013.05.011. Quintana-Navarro, A. B. (2010). Análisis del mercado. Dirección de Marketing. Recuperado de https://goo.gl/ k5kApw. Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Dordrecht, Holanda: Springer Science & Business Media. Reichelderfer, C., & Benton, C. (1974). Some genetic aspects of the resistance of Spodoptera frugiperda to a nuclear polyhedrosis virus. Journal of Invertebrate Pathology, 23(3), 378-382. doi:10.1016/0022-2011(74)90105-0. Reyes, Y., Infante, D., García-Borrego, J., Del Pozo, E., Cruz, A., & Martínez, B. (2012). Compatibilidad de Trichoderma asperellum Samuels con herbicidas de mayor uso en el cultivo del arroz. Revista de Protección Vegetal, 27(1), 45-53. Ribeiro, L. P., Blume, E., Borgoni, P. C., Dequech, S. T. B., Brand, S. C., & Junges, E. (2012). Compatibility of Beauveria bassiana commercial isolate with botanical insecticides utilized in organic crops in southern Brazil. Biological Agriculture & Horticulture, 28(4), 223-240. doi: 10.1080/01448765.2012.735088. Rohrmann, G. F. (2013). Baculovirus molecular biology. Corvallis, EE. UU.: Oregon State University Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., ... Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20(4), 430-440. Rossi-Zalaf, L. S., Alves, S. B., Lopes, R. B., Silveira, S., & Tanzini, M. R. (2008). Interacao de microrganismos com outros agentes de controle de pragas e doencas. En S. B. Alves & R. B. Lopes (Eds.), Controle microbiano de pragas na América Latina: avancos e desafios Piracicaba (pp. 279- 302). Piracicaba, Brazil: Fundação de Estudos Agrários Luiz de Queiroz (FEALQ). Rottenbacher, L., Schossler, M., & Bauer, W. (1987). Modelling a solid-state fluidized bed fermenter for ethanol production with Saccharomyces cerevisiae. Bioprocess Engineering, 2(1), 25-31. doi:10.1007/BF00369223. Ruocco, M., Woo, S., Vinale, F., Lanzuise, S., & Lorito, M. (2011). Identified difficulties and conditions for field success of biocontrol. 2. Technical aspects: factors of efficacy. En P. C. Nicot (Ed.) Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors (45-57). Zurich; Suiza: International Organisation for Biological and Integrated Control/West Palaearctic Regional Section (IOBC/ WPRS). Santos, A., García, M., Cotes, A. M., & Villamizar, L. (2012). Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología, 29(3), 150- 156. doi:10.1016/j.riam.2011.11.002. Santos, A., Grijalba, E., Zuluaga, M. V., Gómez, M., & Villamizar, L. (2013). Compatibilidad in vitro de un bioplaguicida a base de Lecanicillium lecanii (Hypocreales: Clavicipitaceae) con agroquímicos empleados en los cultivos de algodón y berenjena. Revista Colombiana de Biotecnología, 15(2), 132-142. doi:10.15446/rev.colomb. biote.v15n2.38025. Santos, A. M., Uribe, L. A., Ruiz, J. C., Tabima, L., Gómez, J. A., & Villamizar, L. F. (2014). Nucleopoliedrovirus de Spodoptera frugiperda SfNPV003: Compatibilidad con agroquímicos y estabilidad en condiciones de almacenamiento. Corpoica Ciencia y Tecnología Agropecuaria, 15(2), 219-228. Recuperado de http://revista.corpoica. org.co/index.php/revista/article/view/361. Sauphanor, B., Berling, M., Toubon, F., Reyes, M., Delnatte, J., & Allemoz, P. (2006). Cases of resistance to granulosis virus in the codling moth. Phytoma, (590), 24-27. Samson, P. R., Milner, R. J., Sander, E. D., & Bullard, G. K. (2005). Effect of fungicides and insecticides applied during planting of sugarcane on viability of Metarhizium anisopliae and its efficacy against white grubs. BioControl, 50(1), 151-163. Recuperado de https://link.springer. com/journal/10526. Saucedo-Castaneda, G., Lonsane, B. K., Krishnaiah, M. M., Navarro, J. M., Roussos, S., & Raimbault, M. (1992). Maintenance of heat and water balances as a scale-up criterion for the production of ethanol by Schwanniomyces castellii in a solid state fermentation system. Process Biochemistry, 27(2), 97-107. doi:10.1016/0032- 9592(92)80016-V. Schisler, D., Jackson, M., & Bothast, R. (1991). Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata. Phytopathology, 81(6), 458-461. Schmitt, A., Bisutti, I., Ladurner, E., Benuzzi, M., Sauphanor, B., Kienzle, J., ... Huber, J., (2013). The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. Journal of Applied Entomology, 137(9), 641-649. doi:10.1111/jen.12046. Schumacher, V., & Poehling, H. M. (2012). In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae. Fungal Biology, 116(1), 121-132. doi:10.1016/j. funbio.2011.10.007 Shi, Y., Xu, X., & Zhu, Y. (2009). Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse. Applied Microbiology and Biotechnology, 82(5), 921-927. doi:10.1007/s00253-009-1874-2. Silman, R. W., Nelsen, T., & Bothast, R. (1991). Comparison of culture methods for production of Colletotrichum truncatum spores for use as a mycoherbicide. fems Microbiology Letters, 79(1), 69-74. Singh, A., Tatewar, D., Shastri, P., & Pandharipande, S. (2008). Application of ann for prediction of cellulase and xylanase production by Trichoderma reesei under ssf condition. Indian Journal of Chemical Technology,15(1) 53-58. Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., & Sharma, R. K. (2016). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology and Microbiology, 7(1), 2. doi:10.4172/2157-7471.1000327. Singh, N., Rai, V., & Tripathi, C. K. M. (2012). Production and optimization of oxytetracycline by a new isolate Streptomyces rimosus using response surface methodology. Medicinal Chemistry Research, 21(19), 3140-3145. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. (2016). Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 7, 2087. doi:10.3389/fmicb.2016.02087 Soberón, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66(8), 1337-1349. doi:10.1007/s00018-008-8330-9. Soccol, C., Ayala, L. A., Thomaz-Soccol, V., Krieger, N., & Dos Santos, H. R. (1997). Spore production by entomopathogenic fungus Beauveria bassiana from declassified potatoes by solid-state fermentation. Revista de Microbiología, 28(Suppl. 1), 34-42. Sreekumar, G., & Krishnan, S. (2010). Enhanced biomass production study on probiotic Bacillus subtilis SK09 by medium optimization using response surface methodology. African Journal of Biotechnology, 9(47), 8078-8084. doi:10.5897/AJB10.1283. Surendran, M., Kannan, G. S., Nayar, K., & Leenakumary, S. (2012). Compatibility of Pseudomonas fluorescens with agricultural chemicals. Journal of Biological Control, 26(2), 190-193. http://www.informaticsjournals.com/index. php/jbc/article/viewFile/3517/2602 Tabashnik, B. E. (1994). Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39, 47-79. doi:10.1146/annurev.en.39.010194.000403. Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81(15), 146-161. doi:10.1016/j. bej.2013.10.013. Trakunjae, C., Sukkhum, S., & Kitpreechavanich, V. (2015). Enhanced of high level of β-xylosidase with β-xylanase production by co-culturing of Bacillus strains from rice straw using response surface methodology. Chiang Mai Journal of Science, 42(4), 822-839. Tripathi, C. K. M., Praveen, V., Singh, V., & Bihari, V. (2004). Production of antibacterial and antifungal metabolites by Streptomyces violaceusniger and media optimization studies for the maximum metabolite production. Medicinal Chemistry Research, 13(8), 790-799. doi:10.1007/ s00044-004-0118-3 Tunga, R., Banerjee, R., & Bhattacharyya, B. C. (1998). Optimizing some factors affecting protease production under solid state fermentation. Bioprocess Engineering, 19(3), 187-190. Union, G. B. (2017). Estrategias del mercado. Recuperado de http://www.globalbusinessunion.com/spanish/marketstrategies.php. Uribe, L. (2015). Estudio de la compatibilidad de un bioplaguicida a base de la levadura Rhodotorula glutinis Lv316 con fungicidas empleados en el cultivo de mora (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia. Velásquez, Z., Uribe, D., & Zuluaga, A. (1998). Fundamentos de medicina: Terapia dermatológica. Medellín: Corporación para Investigaciones Biológicas (CIB). Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2006). Dissolved oxygen as principal parameter for conidia production of biocontrol fungi Trichoderma viride in non-Newtonian wastewater. Journal of Industrial Microbiology and Biotechnology, 33(11), 941- 952. doi:10.1007/s10295-006-0164-6. Viccini, G., Mannich, M., Capalbo, D. M. F., ValdebenitoSanhueza, R., & Mitchell, D. A. (2007). Spore production in solid-state fermentation of rice by Clonostachys rosea, a biopesticide for gray mold of strawberries. Process Biochemistry, 42(2), 275-278. https://doi.org/10.1016/j. procbio.2006.07.006. Villamizar, L., Grijalba, E., & Cotes, A. M. (2006). Desarrollo de un bioplaguicida para el control de la mosca blanca Bemisia tabaci. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (CORPOICA). Villarreal, Y. L. (2013). Estudio de estabilidad para la selección de una formulación de un producto probiótico (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia. Wang, D., Cooney, C., Demain, A., Dunnill, P., Humphrey, A., & Lilly, M. (1997). Translation of laboratory, pilot, and plant scale data. Fermentation and enzyme technology. Nueva York, EE. UU.: Wiley. Wang, P., Liu, X., Wang, Y., Ruan, H., & Zheng, X. (2011). Statistical media optimization for the biomass production of postharvest biocontrol yeast Rhodosporidium paludigenum. Preparative Biochemistry & Biotechnology, 41(4), 382-397. doi:10.1080/10826068.2011.552143. Wells, J. (2004). Preformulación farmacéutica: propiedades fisicoquímicas de las sustancias farmacológicas. En M. E. Aulton (Ed.), Farmacia: la ciencia del diseño de las formas farmacéuticas (pp. 114-139). Madrid, España: Elsevier. Xu, X., Yu, Y., & Shi, Y. (2011). Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation. Biotechnology Letters, 33(4), 763-768. doi:10.1007/s10529-010-0496-1. Yadav, A. K., & Chandra, K. (2014). Mass production and quality control of microbial inoculants. Proceedings of Indian National Science Academy, 80(2), 483-489. doi:10.16943/ptinsa/2014/v80i2/5. Yawalkar, A. A., Heesink, A., Versteeg, G. F., & Pangarkar, V. G. (2002). Gas—liquid mass transfer coefficient in stirred tank reactors. The Canadian Journal of Chemical Engineering, 80(5), 840-848. Yu, G., Sinclair, J., Hartman, G., & Bertagnolli, B. (2002). Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 34(7), 955-963. doi:10.1016/S0038- 0717(02)00027-5. Yu, X., Hallett, S., Sheppard, J., & Watson, A. (1997). Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores. Applied Microbiology and Biotechnology, 47(3), 301-305. Yu, X., Hallett, S. G., Sheppard, J., & Watson, A. K. (1998). Effects of carbon concentration and carbon-to-nitrogen ratio on growth, conidiation, spore germination and efficacy of the potential bioherbicide Colletotrichum coccodes. Journal of Industrial Microbiology and Biotechnology, 20(6), 333-338. Zhang, J., & Gao, N.-F. (2007). Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation. Journal of Zhejiang University Science B, 8(2), 98-104. Zhang, J., & Yang, Q. (2015). Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genetics and Molecular Research, 14(1), 1771-1781. doi:10.4238/2015.March.13.4. Zhang, W., Zou, H., Jiang, L., Yao, J., Liang, J., & Wang, Q. (2015). Semi-solid state fermentation of food waste for production of Bacillus thuringiensis biopesticide. Biotechnology and Bioprocess Engineering, 20(6), 1123-1132 Zhu, Y., Knol, W., Smits, J. P., & Bol, J. (1996). Medium optimization for nuclease P1 production by Penicillium citrinum in solid-state fermentation using polyurethane foam as inert carrier. Enzyme and Microbial Technology, 18(2), 108-112. doi:10.1016/0141-0229(95)00082-8. Zhu, Y., Smits, J. P., Knol, W., & Bol, J. (1994). A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnology Letters, 16(6), 643-648. doi:10.1007/BF00128615. Zhuang, L., Zhou, S., Wang, Y., Liu, Z., & Xu, R. (2011). Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: Effects of heavy metals. Bioresource Technology, 102(7), 4820-4826. doi:10.1016/j.biortech.2010.12.098. 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess application/pdf application/pdf Colombia ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA Bogotá (Colombia)