Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.

This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps.

Saved in:
Bibliographic Details
Main Authors: SPERANZA, E. A., CIFERRI, R. R.
Other Authors: EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar.
Format: Artigo de periódico biblioteca
Language:English
eng
Published: 2018-11-13
Subjects:Classes de manejo, Agrupamento de dados espaciais, Ensembles, Cllusterização, Agricultura de Precisão, Precision agriculture, Spatial data, Cluster analysis,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-alice-doc-1099223
record_format koha
spelling dig-alice-doc-10992232018-11-13T23:58:30Z Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. SPERANZA, E. A. CIFERRI, R. R. EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar. Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps. Título equivalente em português: Utilizando ensembles com abordagens de agrupamento espacial para o delineamento de classes de manejo em agricultura de precisão. Edição especial de papers selecionados que foram apresentados no GEOINFO 2016. 2018-11-13T23:58:24Z 2018-11-13T23:58:24Z 2018-11-13 2017 2020-01-21T11:11:11Z Artigo de periódico Brazilian Journal of Cartography, Rio de Janeiro, v. 69, n. 5, p. 923-935, maio 2017. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223 en eng openAccess
institution EMBRAPA
collection DSpace
country Brasil
countrycode BR
component Bibliográfico
access En linea
databasecode dig-alice
tag biblioteca
region America del Sur
libraryname Sistema de bibliotecas de EMBRAPA
language English
eng
topic Classes de manejo
Agrupamento de dados espaciais
Ensembles
Cllusterização
Agricultura de Precisão
Precision agriculture
Spatial data
Cluster analysis
Classes de manejo
Agrupamento de dados espaciais
Ensembles
Cllusterização
Agricultura de Precisão
Precision agriculture
Spatial data
Cluster analysis
spellingShingle Classes de manejo
Agrupamento de dados espaciais
Ensembles
Cllusterização
Agricultura de Precisão
Precision agriculture
Spatial data
Cluster analysis
Classes de manejo
Agrupamento de dados espaciais
Ensembles
Cllusterização
Agricultura de Precisão
Precision agriculture
Spatial data
Cluster analysis
SPERANZA, E. A.
CIFERRI, R. R.
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
description This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps.
author2 EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar.
author_facet EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar.
SPERANZA, E. A.
CIFERRI, R. R.
format Artigo de periódico
topic_facet Classes de manejo
Agrupamento de dados espaciais
Ensembles
Cllusterização
Agricultura de Precisão
Precision agriculture
Spatial data
Cluster analysis
author SPERANZA, E. A.
CIFERRI, R. R.
author_sort SPERANZA, E. A.
title Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
title_short Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
title_full Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
title_fullStr Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
title_full_unstemmed Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
title_sort using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
publishDate 2018-11-13
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223
work_keys_str_mv AT speranzaea usingensembleswithspatialclusteringapproachesappliedinthedelineationofmanagementclassesinprecisionagriculture
AT ciferrirr usingensembleswithspatialclusteringapproachesappliedinthedelineationofmanagementclassesinprecisionagriculture
_version_ 1756025239631822848