Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture.
This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps.
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Artigo de periódico biblioteca |
Language: | English eng |
Published: |
2018-11-13
|
Subjects: | Classes de manejo, Agrupamento de dados espaciais, Ensembles, Cllusterização, Agricultura de Precisão, Precision agriculture, Spatial data, Cluster analysis, |
Online Access: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-alice-doc-1099223 |
---|---|
record_format |
koha |
spelling |
dig-alice-doc-10992232018-11-13T23:58:30Z Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. SPERANZA, E. A. CIFERRI, R. R. EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar. Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps. Título equivalente em português: Utilizando ensembles com abordagens de agrupamento espacial para o delineamento de classes de manejo em agricultura de precisão. Edição especial de papers selecionados que foram apresentados no GEOINFO 2016. 2018-11-13T23:58:24Z 2018-11-13T23:58:24Z 2018-11-13 2017 2020-01-21T11:11:11Z Artigo de periódico Brazilian Journal of Cartography, Rio de Janeiro, v. 69, n. 5, p. 923-935, maio 2017. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223 en eng openAccess |
institution |
EMBRAPA |
collection |
DSpace |
country |
Brasil |
countrycode |
BR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-alice |
tag |
biblioteca |
region |
America del Sur |
libraryname |
Sistema de bibliotecas de EMBRAPA |
language |
English eng |
topic |
Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis |
spellingShingle |
Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis SPERANZA, E. A. CIFERRI, R. R. Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
description |
This paper describes experiments performed using diff erent approaches for spatial data clustering, aiming to assist the delineation of management classes in Precision Agriculture (PA). These approaches were established from the partitional clustering algorithm Fuzzy c-Means (FCM), traditionally used in PA, and from the hierarchical clustering algorithm HACC-Spatial, especially designed for PA. We also performed experiments using diff erent clustering ensembles approaches, evaluating their behavior to achieve consensus solutions from individual clusterings obtained from attribute splitting or using exclusively FCM or HACC-Spatial. The achieved results exhibited some diff erences between FCM and HACC-Spatial, mainly for the visualization of management classes in the form of maps. The HACCSpatial algorithm achieved, in general, better results when compared to FCM and ensembles approaches. Regarding the consensus clusterings provided by ensembles, we can point out the attempt to achieve agreement results which most closely matches the original clusterings, decreasing or increasing the stratifi cation of the management classes maps. |
author2 |
EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar. |
author_facet |
EDUARDO ANTONIO SPERANZA, CNPTIA; RICARDO RODRIGUES CIFERRI, UFSCar. SPERANZA, E. A. CIFERRI, R. R. |
format |
Artigo de periódico |
topic_facet |
Classes de manejo Agrupamento de dados espaciais Ensembles Cllusterização Agricultura de Precisão Precision agriculture Spatial data Cluster analysis |
author |
SPERANZA, E. A. CIFERRI, R. R. |
author_sort |
SPERANZA, E. A. |
title |
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
title_short |
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
title_full |
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
title_fullStr |
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
title_full_unstemmed |
Using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
title_sort |
using ensembles with spatial clustering approaches applied in the delineation of management classes in precision agriculture. |
publishDate |
2018-11-13 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1099223 |
work_keys_str_mv |
AT speranzaea usingensembleswithspatialclusteringapproachesappliedinthedelineationofmanagementclassesinprecisionagriculture AT ciferrirr usingensembleswithspatialclusteringapproachesappliedinthedelineationofmanagementclassesinprecisionagriculture |
_version_ |
1756025239631822848 |