Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction.
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Anais e Proceedings de eventos biblioteca |
Language: | English eng |
Published: |
2017-01-17
|
Subjects: | Interações entre proteína e ligantes, Modelagem, Modelos, Complexo proteína-ligante, Protein-ligand complex, Binding affinity prediction model, Empiric nonparametric predictive model, Plataforma Sting, Binding properties, Models, |
Online Access: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-alice-doc-1060954 |
---|---|
record_format |
koha |
spelling |
dig-alice-doc-10609542017-08-16T04:03:59Z Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. BORRO, L. YANO, I. H. MAZONI, I. NESHICH, G. LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA. Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction. 3Dsig 2016. Pôster #56. 2017-01-17T11:11:11Z 2017-01-17T11:11:11Z 2017-01-17 2016 2020-01-21T11:11:11Z Anais e Proceedings de eventos In: STRUCTURAL BIOINFORMATICS AND COMPUTATIONAL BIOPHYSICS, 2016, Orlando. [Proceedings...]. Orlando: [s.n.], 2016. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954 en eng openAccess 1 pôster. p. 116-117. |
institution |
EMBRAPA |
collection |
DSpace |
country |
Brasil |
countrycode |
BR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-alice |
tag |
biblioteca |
region |
America del Sur |
libraryname |
Sistema de bibliotecas de EMBRAPA |
language |
English eng |
topic |
Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models |
spellingShingle |
Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models BORRO, L. YANO, I. H. MAZONI, I. NESHICH, G. Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
description |
We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction. |
author2 |
LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA. |
author_facet |
LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA. BORRO, L. YANO, I. H. MAZONI, I. NESHICH, G. |
format |
Anais e Proceedings de eventos |
topic_facet |
Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models |
author |
BORRO, L. YANO, I. H. MAZONI, I. NESHICH, G. |
author_sort |
BORRO, L. |
title |
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
title_short |
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
title_full |
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
title_fullStr |
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
title_full_unstemmed |
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
title_sort |
binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. |
publishDate |
2017-01-17 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954 |
work_keys_str_mv |
AT borrol bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions AT yanoih bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions AT mazonii bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions AT neshichg bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions |
_version_ |
1756023048739225600 |