Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.

We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction.

Saved in:
Bibliographic Details
Main Authors: BORRO, L., YANO, I. H., MAZONI, I., NESHICH, G.
Other Authors: LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA.
Format: Anais e Proceedings de eventos biblioteca
Language:English
eng
Published: 2017-01-17
Subjects:Interações entre proteína e ligantes, Modelagem, Modelos, Complexo proteína-ligante, Protein-ligand complex, Binding affinity prediction model, Empiric nonparametric predictive model, Plataforma Sting, Binding properties, Models,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-alice-doc-1060954
record_format koha
spelling dig-alice-doc-10609542017-08-16T04:03:59Z Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions. BORRO, L. YANO, I. H. MAZONI, I. NESHICH, G. LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA. Interações entre proteína e ligantes Modelagem Modelos Complexo proteína-ligante Protein-ligand complex Binding affinity prediction model Empiric nonparametric predictive model Plataforma Sting Binding properties Models We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction. 3Dsig 2016. Pôster #56. 2017-01-17T11:11:11Z 2017-01-17T11:11:11Z 2017-01-17 2016 2020-01-21T11:11:11Z Anais e Proceedings de eventos In: STRUCTURAL BIOINFORMATICS AND COMPUTATIONAL BIOPHYSICS, 2016, Orlando. [Proceedings...]. Orlando: [s.n.], 2016. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954 en eng openAccess 1 pôster. p. 116-117.
institution EMBRAPA
collection DSpace
country Brasil
countrycode BR
component Bibliográfico
access En linea
databasecode dig-alice
tag biblioteca
region America del Sur
libraryname Sistema de bibliotecas de EMBRAPA
language English
eng
topic Interações entre proteína e ligantes
Modelagem
Modelos
Complexo proteína-ligante
Protein-ligand complex
Binding affinity prediction model
Empiric nonparametric predictive model
Plataforma Sting
Binding properties
Models
Interações entre proteína e ligantes
Modelagem
Modelos
Complexo proteína-ligante
Protein-ligand complex
Binding affinity prediction model
Empiric nonparametric predictive model
Plataforma Sting
Binding properties
Models
spellingShingle Interações entre proteína e ligantes
Modelagem
Modelos
Complexo proteína-ligante
Protein-ligand complex
Binding affinity prediction model
Empiric nonparametric predictive model
Plataforma Sting
Binding properties
Models
Interações entre proteína e ligantes
Modelagem
Modelos
Complexo proteína-ligante
Protein-ligand complex
Binding affinity prediction model
Empiric nonparametric predictive model
Plataforma Sting
Binding properties
Models
BORRO, L.
YANO, I. H.
MAZONI, I.
NESHICH, G.
Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
description We propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction.
author2 LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA.
author_facet LUIZ BORRO, Unicamp; INACIO HENRIQUE YANO, CNPTIA; IVAN MAZONI, CNPTIA; GORAN NESHICH, CNPTIA.
BORRO, L.
YANO, I. H.
MAZONI, I.
NESHICH, G.
format Anais e Proceedings de eventos
topic_facet Interações entre proteína e ligantes
Modelagem
Modelos
Complexo proteína-ligante
Protein-ligand complex
Binding affinity prediction model
Empiric nonparametric predictive model
Plataforma Sting
Binding properties
Models
author BORRO, L.
YANO, I. H.
MAZONI, I.
NESHICH, G.
author_sort BORRO, L.
title Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
title_short Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
title_full Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
title_fullStr Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
title_full_unstemmed Binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
title_sort binding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.
publishDate 2017-01-17
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060954
work_keys_str_mv AT borrol bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions
AT yanoih bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions
AT mazonii bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions
AT neshichg bindingaffinitypredictionusinganonparametricregressionmodelbasedonphysicochemicalandstructuraldescriptorsofthenanoenvironmentforproteinligandinteractions
_version_ 1756023048739225600