Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory /
1. Group structure. Preliminaries -- 2. Induced representations. Definition and various realizations -- 3. Further properties of the elementary representations -- 4. Intertwining operators: X-space realization -- 5. Momentum space expansion of the intertwining distribution and positivity -- 6. Nondecomposable representations and intertwining differential operators -- 7. Discrete and general properties of the discrete series -- 8. The Plancheral theorem. Concluding remarks -- 9. The Kronecker product of two elementary representations -- 10. Construction of the Clebsch Gordan expansion -- 11. Special cases and further properties of the expansion formula -- 12. Renormalizable models of self-interacting scalar fields. Dynamical equations for Green functions -- 13. Invariance and invariant solutions of the dynamical equations. Conformal partial wave expansion for the Euclidean Green functions -- 14. Implications of the dynamical equations. Pole structure of conformal partial waves -- 15. Another form of the conformal expansion, involving a Minkowski momentum space integral. The Q-kernels -- 16. The problem of crossing symmetry. Concluding remarks.
Main Authors: | , , , , , |
---|---|
Format: | Texto biblioteca |
Language: | eng |
Published: |
Berlin, Heidelberg : Springer Berlin Heidelberg,
1977
|
Subjects: | Physics., Harmonic analysis., Quantum field theory., String theory., Acoustics., Quantum Field Theories, String Theory., Abstract Harmonic Analysis., |
Online Access: | http://dx.doi.org/10.1007/BFb0009678 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
KOHA-OAI-TEST:224718 |
---|---|
record_format |
koha |
spelling |
KOHA-OAI-TEST:2247182018-07-31T00:04:30ZHarmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / Dobrev, V. K. author. Mack, G. author. Petkova, V. B. author. Petrova, S. G. author. Todorov, I. T. author. SpringerLink (Online service) textBerlin, Heidelberg : Springer Berlin Heidelberg,1977.eng1. Group structure. Preliminaries -- 2. Induced representations. Definition and various realizations -- 3. Further properties of the elementary representations -- 4. Intertwining operators: X-space realization -- 5. Momentum space expansion of the intertwining distribution and positivity -- 6. Nondecomposable representations and intertwining differential operators -- 7. Discrete and general properties of the discrete series -- 8. The Plancheral theorem. Concluding remarks -- 9. The Kronecker product of two elementary representations -- 10. Construction of the Clebsch Gordan expansion -- 11. Special cases and further properties of the expansion formula -- 12. Renormalizable models of self-interacting scalar fields. Dynamical equations for Green functions -- 13. Invariance and invariant solutions of the dynamical equations. Conformal partial wave expansion for the Euclidean Green functions -- 14. Implications of the dynamical equations. Pole structure of conformal partial waves -- 15. Another form of the conformal expansion, involving a Minkowski momentum space integral. The Q-kernels -- 16. The problem of crossing symmetry. Concluding remarks.Physics.Harmonic analysis.Quantum field theory.String theory.Acoustics.Physics.Quantum Field Theories, String Theory.Acoustics.Abstract Harmonic Analysis.Springer eBookshttp://dx.doi.org/10.1007/BFb0009678URN:ISBN:9783540373810 |
institution |
COLPOS |
collection |
Koha |
country |
México |
countrycode |
MX |
component |
Bibliográfico |
access |
En linea En linea |
databasecode |
cat-colpos |
tag |
biblioteca |
region |
America del Norte |
libraryname |
Departamento de documentación y biblioteca de COLPOS |
language |
eng |
topic |
Physics. Harmonic analysis. Quantum field theory. String theory. Acoustics. Physics. Quantum Field Theories, String Theory. Acoustics. Abstract Harmonic Analysis. Physics. Harmonic analysis. Quantum field theory. String theory. Acoustics. Physics. Quantum Field Theories, String Theory. Acoustics. Abstract Harmonic Analysis. |
spellingShingle |
Physics. Harmonic analysis. Quantum field theory. String theory. Acoustics. Physics. Quantum Field Theories, String Theory. Acoustics. Abstract Harmonic Analysis. Physics. Harmonic analysis. Quantum field theory. String theory. Acoustics. Physics. Quantum Field Theories, String Theory. Acoustics. Abstract Harmonic Analysis. Dobrev, V. K. author. Mack, G. author. Petkova, V. B. author. Petrova, S. G. author. Todorov, I. T. author. SpringerLink (Online service) Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
description |
1. Group structure. Preliminaries -- 2. Induced representations. Definition and various realizations -- 3. Further properties of the elementary representations -- 4. Intertwining operators: X-space realization -- 5. Momentum space expansion of the intertwining distribution and positivity -- 6. Nondecomposable representations and intertwining differential operators -- 7. Discrete and general properties of the discrete series -- 8. The Plancheral theorem. Concluding remarks -- 9. The Kronecker product of two elementary representations -- 10. Construction of the Clebsch Gordan expansion -- 11. Special cases and further properties of the expansion formula -- 12. Renormalizable models of self-interacting scalar fields. Dynamical equations for Green functions -- 13. Invariance and invariant solutions of the dynamical equations. Conformal partial wave expansion for the Euclidean Green functions -- 14. Implications of the dynamical equations. Pole structure of conformal partial waves -- 15. Another form of the conformal expansion, involving a Minkowski momentum space integral. The Q-kernels -- 16. The problem of crossing symmetry. Concluding remarks. |
format |
Texto |
topic_facet |
Physics. Harmonic analysis. Quantum field theory. String theory. Acoustics. Physics. Quantum Field Theories, String Theory. Acoustics. Abstract Harmonic Analysis. |
author |
Dobrev, V. K. author. Mack, G. author. Petkova, V. B. author. Petrova, S. G. author. Todorov, I. T. author. SpringerLink (Online service) |
author_facet |
Dobrev, V. K. author. Mack, G. author. Petkova, V. B. author. Petrova, S. G. author. Todorov, I. T. author. SpringerLink (Online service) |
author_sort |
Dobrev, V. K. author. |
title |
Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
title_short |
Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
title_full |
Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
title_fullStr |
Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
title_full_unstemmed |
Harmonic Analysis [electronic resource] : on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory / |
title_sort |
harmonic analysis [electronic resource] : on the n-dimensional lorentz group and its application to conformal quantum field theory / |
publisher |
Berlin, Heidelberg : Springer Berlin Heidelberg, |
publishDate |
1977 |
url |
http://dx.doi.org/10.1007/BFb0009678 |
work_keys_str_mv |
AT dobrevvkauthor harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory AT mackgauthor harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory AT petkovavbauthor harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory AT petrovasgauthor harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory AT todorovitauthor harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory AT springerlinkonlineservice harmonicanalysiselectronicresourceonthendimensionallorentzgroupanditsapplicationtoconformalquantumfieldtheory |
_version_ |
1756270749327294464 |