Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable

Plant lipases are highly versatile biocatalysts due to their chemo-selectivity, enantio-selectivity, and region-selectivity. The purpose was to obtain a recyclable biocatalytic system from Pachira speciosa seed lipases, applicable to lipid biotransformation. A partially purified lipase was obtained from P. speciosa seed extracts, by gel filtration chromatography on Sephadex G-100; the specific lipase activity (LAS) was determined by free fatty acid titration method. A Box-Behnken response surface design was applied to establish conditions that maximize lipase immobilization to three supports: chitosan beads (Ch), calcium alginate beads coated with chitosan (Alg-Ch), and chitosan-Fe(OH)3 magnetic beads (Ch-Fe). The highest LAS of the free enzyme was 0.49±0.01 U/mg at 40 °C and pH 9. The immobilization percentage and LAs of each biocatalytic system was: EQ = 90.6 % and 3.74±0.3 nKat/mg; Alg-Q = 88.5 % and 3.62±0.1 nKat/mg; EQ-Fe = 76.4 % and 2.88±0.1 nKat/mg. The most stable biocatalytic system was lipase immobilized in Ch, with 85 % retention of LAS until the third catalytic cycle. Future studies will be focused on establishing the kinetic parameters of the new biocatalyst.

Saved in:
Bibliographic Details
Main Authors: Mendoza Meza, Dary, Valenzuela Jaramillo, Ivon Esher
Format: Digital revista
Language:spa
Published: Universidad del Cauca -Facultad de ciencias Agrarias 2021
Online Access:https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1890
Tags: Add Tag
No Tags, Be the first to tag this record!
id rev-bsaa-co-article-1890
record_format ojs
institution UNICAUCA CO
collection OJS
country Colombia
countrycode CO
component Revista
access En linea
databasecode rev-bsaa-co
tag revista
region America del Sur
libraryname Biblioteca de la UNICAUCA de Colombia
language spa
format Digital
author Mendoza Meza, Dary
Valenzuela Jaramillo, Ivon Esher
spellingShingle Mendoza Meza, Dary
Valenzuela Jaramillo, Ivon Esher
Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
author_facet Mendoza Meza, Dary
Valenzuela Jaramillo, Ivon Esher
author_sort Mendoza Meza, Dary
title Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
title_short Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
title_full Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
title_fullStr Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
title_full_unstemmed Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
title_sort lipasa de semillas de pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable
description Plant lipases are highly versatile biocatalysts due to their chemo-selectivity, enantio-selectivity, and region-selectivity. The purpose was to obtain a recyclable biocatalytic system from Pachira speciosa seed lipases, applicable to lipid biotransformation. A partially purified lipase was obtained from P. speciosa seed extracts, by gel filtration chromatography on Sephadex G-100; the specific lipase activity (LAS) was determined by free fatty acid titration method. A Box-Behnken response surface design was applied to establish conditions that maximize lipase immobilization to three supports: chitosan beads (Ch), calcium alginate beads coated with chitosan (Alg-Ch), and chitosan-Fe(OH)3 magnetic beads (Ch-Fe). The highest LAS of the free enzyme was 0.49±0.01 U/mg at 40 °C and pH 9. The immobilization percentage and LAs of each biocatalytic system was: EQ = 90.6 % and 3.74±0.3 nKat/mg; Alg-Q = 88.5 % and 3.62±0.1 nKat/mg; EQ-Fe = 76.4 % and 2.88±0.1 nKat/mg. The most stable biocatalytic system was lipase immobilized in Ch, with 85 % retention of LAS until the third catalytic cycle. Future studies will be focused on establishing the kinetic parameters of the new biocatalyst.
publisher Universidad del Cauca -Facultad de ciencias Agrarias
publishDate 2021
url https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1890
work_keys_str_mv AT mendozamezadary lipasadesemillasdepachiraspeciosainmovilizadasenesferasdequitosanounsistemabiocataliticoreusable
AT valenzuelajaramilloivonesher lipasadesemillasdepachiraspeciosainmovilizadasenesferasdequitosanounsistemabiocataliticoreusable
AT mendozamezadary lipaseofpachiraspeciosaseedsimmobilizedinchitosanbeadsarecyclablebiocatalyticsystem
AT valenzuelajaramilloivonesher lipaseofpachiraspeciosaseedsimmobilizedinchitosanbeadsarecyclablebiocatalyticsystem
_version_ 1763178396584509440
spelling rev-bsaa-co-article-18902021-12-23T20:21:44Z Lipasa de semillas de Pachira speciosa inmovilizadas en esferas de quitosano: un sistema bio-catalítico reusable Lipase of Pachira speciosa seeds immobilized in chitosan beads: a recyclable bio-catalytic system Mendoza Meza, Dary Valenzuela Jaramillo, Ivon Esher Lipasa vegetal Inmovilización Actividad Lipolitica Biocatalizador Quitosano Pachira speciosa Bioconversion Actividad residual Esferas magnéticas Alginato Plant Lipase Immobilization Lipolytic Activity Biocatalyst Chitosan Bioconversion Residual activity Magnetic beads Alginate Pachira speciosa Plant lipases are highly versatile biocatalysts due to their chemo-selectivity, enantio-selectivity, and region-selectivity. The purpose was to obtain a recyclable biocatalytic system from Pachira speciosa seed lipases, applicable to lipid biotransformation. A partially purified lipase was obtained from P. speciosa seed extracts, by gel filtration chromatography on Sephadex G-100; the specific lipase activity (LAS) was determined by free fatty acid titration method. A Box-Behnken response surface design was applied to establish conditions that maximize lipase immobilization to three supports: chitosan beads (Ch), calcium alginate beads coated with chitosan (Alg-Ch), and chitosan-Fe(OH)3 magnetic beads (Ch-Fe). The highest LAS of the free enzyme was 0.49±0.01 U/mg at 40 °C and pH 9. The immobilization percentage and LAs of each biocatalytic system was: EQ = 90.6 % and 3.74±0.3 nKat/mg; Alg-Q = 88.5 % and 3.62±0.1 nKat/mg; EQ-Fe = 76.4 % and 2.88±0.1 nKat/mg. The most stable biocatalytic system was lipase immobilized in Ch, with 85 % retention of LAS until the third catalytic cycle. Future studies will be focused on establishing the kinetic parameters of the new biocatalyst. Las lipasas vegetales son biocatalizadores altamente versátiles debido a su quimioselectividad, enantioselectividad y regioselectividad. El propósito fue obtener un sistema biocatalítico reciclable a partir de lipasas de semillas de Pachira speciosa, aplicable a la biotransformación de lípidos. Se obtuvo una lipasa parcialmente purificada de extractos de semillas de P. speciosa, mediante cromatografía de filtración en gel en Sephadex G-100; la actividad específica lipasa (ALe) se determinó por el método de titulación de ácidos grasos libres. Se aplicó un diseño de superficie de repuesta Box-Behnken para establecer las condiciones que maximizan la inmovilización de la lipasa a tres soportes: esferas de quitosano (Q), esferas de alginato de calcio cubiertas con quitosano (Alg-Q) y esferas magnéticas de quitosano-Fe(OH)3 (Q-Fe). La mayor ALe de la enzima libre fue 0,49±0,01U/mg, a 40 °C y pH 9. El porcentaje de inmovilización y la ALe de cada biocatalízador fue: Q = 90,6 % y 3,74±0,3 nKat/mg; Alg-Q = 88,5 % y 3,62±0,1 nKat/mg; EQ-Fe = 76,4 % y 2,88±0,1 nKat/mg. El sistema biocatalítico más estable fue la lipasa inmovilizada en quitosano, con 85 % de rentención de la ALe hasta el tercer ciclo catalítico. Estudios futuros estarán enfocados a establecer los parámetros cinéticos del nuevo biocatalizador. Universidad del Cauca -Facultad de ciencias Agrarias 2021-10-21 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1890 10.18684/rbsaa.v20.n1.2022.1890 Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 20 No. 1 (2022): Enero a Junio; 179-193 Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 20 Núm. 1 (2022): Enero a Junio; 179-193 1909-9959 1692-3561 spa https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1890/1601 /*ref*/AKSHITA, MEHTA; SUMAN, GULERIA; ROJI, SHARMA; REENA, GUPTAET. Chapter 6 - The lipases and their applications with emphasis on food industry. En RAMESH C. Ray; Applied Biotechnology Reviews, Microbial Biotechnology in Food and Health. Bhubaneswar (India): Academic Press, 2020, 308 p. /*ref*/ALBAYATI, SAMAH-HASHIM; MASOMIAN, MALIHE; ISHAK, SITI-NOR-HASMAH; MOHAMAD-ALI, MOHD-SHUKURI-BIN; THEAN, ADAM LEOW; MOHD-SHARIFF, FAIROLNIZA-BINTI; MUHD-NOOR, NOOR-DINA-BINTI; RAJA-ABD-RAHMAN, RAJA-NOOR-ZALIHA. Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts, v. 10, n. 7, 2020. p. 747. http://doi.org/10.3390/catal10070747 /*ref*/ALNOCH, ROBSON-CARLOS; ALVES-DOS SANTOS, LEANDRO; MARQUES-DE ALMEIDA, JANAINA; KRIEGER, NADIA; MATEO, CESAR. Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts, v. 10, 2020, p. 697. https://doi.org/10.3390/catal10060697 /*ref*/BAI, YUAN; WU, WEI. The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-chitosan Gel Beads. Applied Biochemistry and Biotechnology (Preprint), 2021.https://doi.org/10.21203/rs.3.rs-680678/v1 /*ref*/BERNAL, RODRIGO; GRADSTEIN, ROBERT; CELIS, MARTA. Catálogo de plantas y líquenes de Colombia. Bogotá (Colombia): Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 2015. /*ref*/BHARATHI, DEVARAJ; RAJALAKSHMI, G.; KOMATHI, S. Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University – Science, v. 31, n. 4, 2019, p. 898-901.https://doi.org/10.1016/j.jksus.2017.12.018 /*ref*/BIRÓ, EMESE; S.Z. NÉMETH, ÁGNES; SISAK, CSABA; FECZKÓ, TIVADAR; GYENIS; JÁNOS Preparation of chitosan particles suitable for enzyme immobilization. Journal of Biochemical and Biophysical Methods, v. 70, n. 6, 2018, p. 1240-1246. http://doi.org/10.1016/j.jprot.2007.11.005 /*ref*/BONINE, BARBARA; PERES-POLIZELLI, PATRICIA; BONILLA-RODRIGUEZ, GUSTAVO. Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads, Enzyme Research, 2014, p. 1315-1322.https://doi.org/10.1155/2014/738739 /*ref*/KIELKOPF, CLARA; BAUER, WILLIAM; URBATSCH, INA. Bradford Assay for Determining Protein Concentration, Cold Spring Harbor Protocols, v. 4, 2020, p. 136-138.https://doi.org/10.1101/pdb.prot102269 /*ref*/CHANDRA, PREM; ENESPA, RANJAN-SINGH; ARORA, PANKAI-KUMAR. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, v. 19, 2020. p. 1-42.https://doi.org/10.1186/s12934-020-01428-8 /*ref*/CONG, SHANZI; TIAN, KANGMING; ZHANG, XIN; LU, FUPING; SINGH, SUREN; PRIOR, BERNARD; WANG, ZHENG-XIANG. Synthesis of flavor esters by a novel lipase from Aspergillus niger in a soybean-solvent system. 3 Biotech, v. 9, n. 6, 2019, p. 244. https://doi.org/10.1007/s13205-019-1778-5 /*ref*/EHLERT, JANNA; KRONEMANN, JENNY; ZUMBRÄGEL, NADINE; PRELLER, MATTHIAS. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Molecules (Basel, Switzerland), v. 24, n. 23, 2019, p. 1-16.https://doi.org/10.3390/molecules24234272 /*ref*/FATIMA, SAMAR; FARYAD, AMNA; ATAA, ASIA; JOYIA, AHMAD-FAIZ; PARVAIZ, AQSA. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 2020, p. 1-14. https://doi.org/10.1002/bab.2019 /*ref*/GUEVARA-ANDINO, JUAN-ERNESTO; FERNANDEZ-ALONSO, JOSÉ-LUIS. A Remarkable New Species of Pachira (Malvaceae: Bombacoideae) from an Amazonian Hotspot of Endemism. Systematic Botany, v. 43, n. 4, 2018, p. 993-999.https://doi.org/10.1600/036364418X697724 /*ref*/HELAL, SHIMAA; ABDELHADY, HEMMAT M.; ABOU-TALEB, KHADIGA A.; HASSAN, MERVAT G.; AMER, MAHMOUD M. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering and Biotechnology, v. 19, n. 1, 2021.https://doi.org/10.1186/s43141-020-00094-y /*ref*/HU, JUN; CAI, WENHAO; WANG, CHANGGAO; DU, XIN; LIN, JIANGUO; CAI, JUN. Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnology & Biotechnological Equipment, v. 32, n. 3, 2018, p. 583-590.https://doi.org/10.1080/13102818.2018.1446764 /*ref*/JARES-CONTESINI, FABIANO; GOMES-DAVANÇO, MARCELO; PAGOTTO-BORIN, GUSTAVO; GARCIA-VANEGAS, KATHERINA; GONÇALVES-CIRINO, JOÃO-PEDRO; RODRIGUES-DE MELO, RICARDO; MORTENSEN, UFFE-HASBRO; HILDÉN, KRISTIINA; ROSSI-CAMPOS, DANIEL; DE OLIVEIRA-CARVALHO, PATRICIA. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts, v. 10, 2020, p. 1032.https://doi.org/10.3390/catal10091032 /*ref*/KAWIŃSKI, ADAM; MIKLASZEWSKA, MAGDALENA; STELTER, SZYMON; GŁĄB, BARTOSZ; BANAŚ, ANTONI. Lipases of germinating jojoba seeds efficiently hydrolyze triacylglycerols and wax esters and display wax ester-synthesizing activity. BMC Plant Biology, v. 21, n. 50, 2021, p. 1-13 https://doi.org/10.1186/s12870-020-02823-4 /*ref*/KHOO, KUAN-SHIONG; LEONG, HUI-YI; CHEW, KIT-WAYNE: LIM, JUN-WEI; LING, TAU-CHUAN; SHOW, PAU-LOKE; YEN, HONG-WEI. Liquid Biphasic System: A Recent Bioseparation Technology. Processes, v. 8, n. 2, 2020, p. 149. /*ref*/KUMAR, ANIL; MUKHIA, SRIJANA; KUMAR, NEEJAR; ACHARYA, VISHAL; KUMAR, SANJAY; KUMAR, RAKSHAK. A Broad Temperature Active Lipase Purified from a Psychrotrophic Bacterium of Sikkim Himalaya with Potential Application in Detergent Formulation. Frontiers in Bioengineering and Biotechnology, v. 8, 2020, p. 1-16.http://doi.org/10.3389/fbioe.2020.00642 /*ref*/LV, LIANGLIANG; DAI, LINGMEI; DU, WEI; LIU, DEHUA. Progress in Enzymatic Biodiesel Production and Commercialization. Processes, v. 9, 2021, p. 355.https://doi.org/10.3390/pr9020355 /*ref*/MUKHERJEE, K.D. Plant lipases and their application in lipid biotransformations. Progress in Lipid Research, v. 33, n. 1-2, 1994, p.165-174. https://doi.org/10.1016/0163-7827(94)90019-1 /*ref*/NHAT, DANG-MINH; HA, PHAN-THI-VIET. The isolation and characterization of lipase from Carica papaya latex using zwitterion sodium lauroyl sarcosinate as agent. Potravinarstvo Slovak Journal of Food Sciences, v. 13, 2019, p. 773 -778. https://doi.org/10.5219/1164 /*ref*/NURALIYAH, ANDI; PERDANI, MEKA SAIMA, PUTRI, DWINI; SHLAN, MUHAMAD; WIJANARKO, ANONDHO; HERMANSYAH, HERI. Effect of Additional Amino Group to Improve the Performance of Immobilized Lipase From Aspergillus niger by Adsorption-Crosslinking Method. Front. Energy Res. v. 9, 2021 p. 616945.https://doi.org/10.3389/fenrg.2021.616945 /*ref*/PAL, AJAY; KHANUM, FARHATH. Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: Characterization of immobilized enzyme. Process Biochemistry, v. 46, n. 6, 2011, p. 1315-1322.https://doi.org/10.1016/j.procbio.2011.02.024 /*ref*/PATEL, NAVEEN; RAI, DHANANJAI; SHIVAM; SHAHANE SHRADDHA; MISHRA, UMESH. Lipases: Sources, Production, Purification, and Applications. Recent Patents on Biotechnology, v. 13, n. 1, 2019, p. 45-56. /*ref*/PEREIRA-CIPOLATTI, ELIANE; COSTA-CERQUEIRA-PINTO, MARTINA; OLIVEIRA-HENRIQUES, AROSANA; COSTA DA SILVA-PINTO, JOSÉ-CARLOS; MACHADO-DE CASTRO, ALINE; GUIMARÃES-FREIRE, DENISE-MARIA; ANDRADE-MANOEL, EVELIN. Enzymes in Green Chemistry: The State of the Art in Chemical Transformations. En SINGH, RAM-SARUP; SINGHANIA, REETA-RANI; PANDEY, ASHOK; LARROCHE, CHRISTIAN. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Amsterdam (Netherlands): Elsevier, 2019, 524 p.https://doi.org/10.1016/b978-0-444-64114-4.00005-4 /*ref*/PERES-POLIZELLI, PATRICIA; DELL ANTONIO-FACCHINI, FERNANDA; CABRAL, HAMILTON; BONILLA-RODRIGUEZ, GUSTAVO-ORLANDO. A new lipase isolated from oleaginous seeds from Pachira aquatica (Bombacaceae). Applied Biochemistry and Biotechnology, v. 150, n. 3, 2008, p. 233-242. https://doi.org/10.1007/s12010-008-8145-z /*ref*/POSPISKOVA, KRISTYNA; SAFARIK, IVO. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohydrate Polymers, v. 96, n. 2, 2013, p. 545-548. http://doi.org/10.1016/j.carbpol.2013.04.014 /*ref*/SANTOS-DUARTE, DIRLIANE; DE ALMEIDA-NASCIMENTO, JOSÉ-AUGUSTO; DE-BRITTO, DOUGLAS. Scale-up in the synthesis of nanoparticles for encapsulation of agroindustrial active principles. Ciência e Agrotecnologia, v. 43, 2019, p. e023819.https://dx.doi.org/10.1590/1413-7054201943023819 /*ref*/SETH, SONALI; CHAKRAVORTY, DEBAMITRA; KUMAR-DUBEY, VIKASH; PATRA, SANJUKTA. An insight into plant lipase research - challenges encountered. Protein Expression and Purification, v. 85, 2014, p. 13-21. /*ref*/SPELMEZAN, CRISTINA-GEORGIANA; BENCZE, LÁSZLÓ-CSABA; KATONA, GABRIEL; IRIMIE, FLORIN-DAN; PAIZS, CSABA; TOȘA, MONICA-IOANA. Efficient and Stable Magnetic Chitosan-Lipase B from Candida Antarctica Bioconjugates in the Enzymatic Kinetic Resolution of Racemic Heteroarylethanols. Molecules, v. 25, 2020, p. 2-15. /*ref*/SWAGATA, PAHARI; LEXUAN, SUN; EMIL, ALEXOV. PKAD: a database of experimentally measured pKa values of ionizable groups in proteins. Database, v. 2019, 2019, p. 1-7.https://doi.org/10.1093/database/baz024 /*ref*/URQUIJO-RODRIGUEZ, MILENA., FONTALVO-GÓMEZ, MIRIAM; VELOSO-DE PAULA, ARIELA; MENDOZA-MEZA, DARY. Hidrólisis enzimática del aceite de Bactris guineensis con fracciones del látex de Carica papaya: estudio del efecto de la temperatura, pH y concentración del sustrato. Biotecnología en el Sector Agropecuario y Agroindustrial, v. 18, 2020, p. 70-81https://doi.org/10.18684/bsaa(18)70-81 /*ref*/XIE, KONGLIANG; YU, YANHONG; SHI, YAQI. Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydrate Polymers, v. 78, n. 4, 2009, p. 799-805.https://doi.org/10.1016/j.carbpol.2009.06.019 /*ref*/XU, JIAKUN; SUN, JINGJING; WANG, YUEJUN: SHENG, JUN; WANG, FANG; SUN, MIU. Application of iron magnetic nanoparticles in protein immobilization. Molecules, v. 19, n. 8, 2014, p. 11465–11486.https://doi.org/10.3390/molecules190811465 /*ref*/YAGAR, HULIA; BALKAN, UGUR, Entrapment of laurel lipase in chitosan hydrogel beads. Artificial Cells, Nanomedicine, and Biotechnology, v. 45, n. 5, 2017, p. 867-870. https://doi.org/10.1080/21691401.2016.1182920 /*ref*/ZIENKIEWICZ, AGNIESZKA; REJÓN, JUAN-DAVID; ZIENKIEWICZ, KRZYSZTOF; CASTRO, ANTONIO-JESÚS; RODRÍGUEZ-GARCÍA, MARIA-ISABEL. In Gel Detection of Lipase Activity in Crude Plant Extracts (Olea europaea). Bio-protocol, v. 5, n. 8, 2015, p. e1444. https://doi.org/10.21769/BioProtoc.1444 Derechos de autor 2021 Universidad del Cauca