Quality of service assesment using machine learning techniques for the NETCONF protocol

Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.

Saved in:
Bibliographic Details
Main Authors: Ouret, Javier A., Parravicini, Ignacio
Format: Documento de conferencia biblioteca
Language:eng
Published: IEE Explore 2018
Subjects:PROTOCOLOS, APRENDIZAJE AUTOMÁTICO, MODELO DE DATOS, REDES,
Online Access:https://repositorio.uca.edu.ar/handle/123456789/14751
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ucacris:123456789-14751
record_format koha
spelling oai:ucacris:123456789-147512023-03-01T15:45:41Z Quality of service assesment using machine learning techniques for the NETCONF protocol Ouret, Javier A. Parravicini, Ignacio PROTOCOLOS APRENDIZAJE AUTOMÁTICO MODELO DE DATOS REDES Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions. 2022-08-23T18:49:54Z 2022-08-23T18:49:54Z 2018 Documento de conferencia Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751 978-1-5386-5447-7 https://repositorio.uca.edu.ar/handle/123456789/14751 10.1109/CACIDI.2018.8584342 eng info:eu-repo/semantics/closedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf IEE Explore II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018
institution UCA
collection DSpace
country Argentina
countrycode AR
component Bibliográfico
access En linea
databasecode dig-uca
tag biblioteca
region America del Sur
libraryname Sistema de bibliotecas de la UCA
language eng
topic PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
spellingShingle PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
Ouret, Javier A.
Parravicini, Ignacio
Quality of service assesment using machine learning techniques for the NETCONF protocol
description Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.
format Documento de conferencia
topic_facet PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
author Ouret, Javier A.
Parravicini, Ignacio
author_facet Ouret, Javier A.
Parravicini, Ignacio
author_sort Ouret, Javier A.
title Quality of service assesment using machine learning techniques for the NETCONF protocol
title_short Quality of service assesment using machine learning techniques for the NETCONF protocol
title_full Quality of service assesment using machine learning techniques for the NETCONF protocol
title_fullStr Quality of service assesment using machine learning techniques for the NETCONF protocol
title_full_unstemmed Quality of service assesment using machine learning techniques for the NETCONF protocol
title_sort quality of service assesment using machine learning techniques for the netconf protocol
publisher IEE Explore
publishDate 2018
url https://repositorio.uca.edu.ar/handle/123456789/14751
work_keys_str_mv AT ouretjaviera qualityofserviceassesmentusingmachinelearningtechniquesforthenetconfprotocol
AT parraviciniignacio qualityofserviceassesmentusingmachinelearningtechniquesforthenetconfprotocol
_version_ 1762928593075175424