Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress

Seedlings of two sorghum genotypes [Sorghum bicolor (L.) Moench], one salt tolerant (CSF 20) and the other salt sensitive (CSF 18) were grown in nutrient solution containing 0, 50 and 100 mmol.L-1 NaCl for seven days and the osmotic potential (Ys) and the contribution of organic and inorganic solutes to the Ys were determined in the leaves and roots. Salinity reduced the Ys of the cellular sap of leaves and roots in both genotypes, mainly in the salt sensitive one. The higher decrease in the Ys in the salt sensitive genotype was mostly due to higher accumulation of Na+ and Cl- that probably exceeded the amount needed for the osmotic adjustment. Among the inorganic solutes, K+ contributed the most to the Ys in control unstressed seedlings, but its contribution decreased as salt stress increased, especially in the salt sensitive genotype. Soluble carbohydrates and amino acids were the organic solutes that contributed the most to the leaf and root Ys, respectively. No statistically significant difference in these organic solute contributions to the leaf Ys between genotypes was observed. Their contributions to the root Ys, however, were higher in the salt tolerant genotype, especially at higher NaCl concentration. Proline contribution to leaf and root Ys was quite small in both genotypes and its accumulation was not related to salt tolerance. Our results suggest that the salt tolerant genotype was able to maintain a more adequate osmotic pool in the leaves and roots under salt stress than the salt sensitive genotype.

Saved in:
Bibliographic Details
Main Authors: Lacerda,Claudivan Feitosa de, Cambraia,José, Oliva,Marco Antonio, Ruiz,Hugo Alberto
Format: Digital revista
Language:English
Published: Brazilian Journal of Plant Physiology 2003
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202003000200007
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Seedlings of two sorghum genotypes [Sorghum bicolor (L.) Moench], one salt tolerant (CSF 20) and the other salt sensitive (CSF 18) were grown in nutrient solution containing 0, 50 and 100 mmol.L-1 NaCl for seven days and the osmotic potential (Ys) and the contribution of organic and inorganic solutes to the Ys were determined in the leaves and roots. Salinity reduced the Ys of the cellular sap of leaves and roots in both genotypes, mainly in the salt sensitive one. The higher decrease in the Ys in the salt sensitive genotype was mostly due to higher accumulation of Na+ and Cl- that probably exceeded the amount needed for the osmotic adjustment. Among the inorganic solutes, K+ contributed the most to the Ys in control unstressed seedlings, but its contribution decreased as salt stress increased, especially in the salt sensitive genotype. Soluble carbohydrates and amino acids were the organic solutes that contributed the most to the leaf and root Ys, respectively. No statistically significant difference in these organic solute contributions to the leaf Ys between genotypes was observed. Their contributions to the root Ys, however, were higher in the salt tolerant genotype, especially at higher NaCl concentration. Proline contribution to leaf and root Ys was quite small in both genotypes and its accumulation was not related to salt tolerance. Our results suggest that the salt tolerant genotype was able to maintain a more adequate osmotic pool in the leaves and roots under salt stress than the salt sensitive genotype.