Parabolic approximation in Kleinman's mechanical approach to laser spiking analysis

Spiking patterns observed at the output of lasers have been widely used to predict their dynamic behavior. The light output of a laser was associated with the coordinate of a particle moving in a potential well by Kleinman (1964). In this paper, this mechanical analogy is revisited so as to investigate a new approximation which might greatly simplify the relationships that determine the rate equations' parameters. A ruby laser numerical example is presented to highlight the consistency of the proposed approximation near the equilibrium point.

Saved in:
Bibliographic Details
Main Author: Sánchez-León,José Antonio
Format: Digital revista
Language:English
Published: Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología 2016
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-64232016000300191
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spiking patterns observed at the output of lasers have been widely used to predict their dynamic behavior. The light output of a laser was associated with the coordinate of a particle moving in a potential well by Kleinman (1964). In this paper, this mechanical analogy is revisited so as to investigate a new approximation which might greatly simplify the relationships that determine the rate equations' parameters. A ruby laser numerical example is presented to highlight the consistency of the proposed approximation near the equilibrium point.