Morphological characterization of aerial hypahe and simulation growth of Fusarium solani under different carbon source for application in the hydrofobic VOCs biofiltration

This work presents the effect of different carbon sources (glycerol, 1-hexanol and n-hexane) over the morphology of the aerial hyphae of the filamentous fungus Fusarium solani for its application in the biofiltration of volatile organic compounds (VOCs). A mathematical model was developed and further verified that combines microscopic and macroscopic parameters describing the mycelial fungal growth. Image analysis of microcultures and culture in agar dishes was performed to determine the morphological parameters. Theresults show that the hydrophobic and volatile carbon rources modified the morphology of Fusarium solani, this is associated with thebettor utilization of the volatile carbon source. The main morphology changes observed with glycerol and n-hexane, were the reduction in both the hyphal diameter (from 2.99+0.29 μm to 2.01+0.35 μm) and the average hyphal length (from 603.8+48.3 μm to 280. 1+36.6 μm). These results indicate an increase in the transport area for the same amount of biomass as an adaptation response to increase the uptake of volatile hydrophobic substrates.

Saved in:
Bibliographic Details
Main Authors: Vergara-Fernández,A., Hernández,S., San Martín-Davison,J., Revah,S.
Format: Digital revista
Language:English
Published: Universidad Autónoma Metropolitana, División de Ciencias Básicas e Ingeniería 2011
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382011000200007
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents the effect of different carbon sources (glycerol, 1-hexanol and n-hexane) over the morphology of the aerial hyphae of the filamentous fungus Fusarium solani for its application in the biofiltration of volatile organic compounds (VOCs). A mathematical model was developed and further verified that combines microscopic and macroscopic parameters describing the mycelial fungal growth. Image analysis of microcultures and culture in agar dishes was performed to determine the morphological parameters. Theresults show that the hydrophobic and volatile carbon rources modified the morphology of Fusarium solani, this is associated with thebettor utilization of the volatile carbon source. The main morphology changes observed with glycerol and n-hexane, were the reduction in both the hyphal diameter (from 2.99+0.29 μm to 2.01+0.35 μm) and the average hyphal length (from 603.8+48.3 μm to 280. 1+36.6 μm). These results indicate an increase in the transport area for the same amount of biomass as an adaptation response to increase the uptake of volatile hydrophobic substrates.