Pravastatin induces cell cycle arrest and decreased production of VEGF and bFGF in multiple myeloma cell line
Abstract Multiple myeloma (MM) is a B cell bone marrow neoplasia characterized by inflammation with an intense secretion of growth factors that promote tumor growth, cell survival, migration and invasion. The aim of this study was to evaluate the effects of pravastatin, a drug used to reduce cholesterol, in a MM cell line.Cell cycle and viability were determinate by Trypan Blue and Propidium Iodide. IL6, VEGF, bFGF and TGFβ were quantified by ELISA and qRT-PCR including here de HMG CoA reductase. It was observed reduction of cell viability, increase of cells in G0/G1 phase of the cell cycle and reducing the factors VEGF and bFGF without influence on 3-Methyl-Glutaryl Coenzyme A reductase expression.The results demonstrated that pravastatin induces cell cycle arrest in G0/G1 and decreased production of growth factors in Multiple Myeloma cell line.
Main Authors: | , , , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Instituto Internacional de Ecologia
2016
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000100059 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Multiple myeloma (MM) is a B cell bone marrow neoplasia characterized by inflammation with an intense secretion of growth factors that promote tumor growth, cell survival, migration and invasion. The aim of this study was to evaluate the effects of pravastatin, a drug used to reduce cholesterol, in a MM cell line.Cell cycle and viability were determinate by Trypan Blue and Propidium Iodide. IL6, VEGF, bFGF and TGFβ were quantified by ELISA and qRT-PCR including here de HMG CoA reductase. It was observed reduction of cell viability, increase of cells in G0/G1 phase of the cell cycle and reducing the factors VEGF and bFGF without influence on 3-Methyl-Glutaryl Coenzyme A reductase expression.The results demonstrated that pravastatin induces cell cycle arrest in G0/G1 and decreased production of growth factors in Multiple Myeloma cell line. |
---|