New Zr-based glass-forming alloys containing Gd and Sm

The effect of minor additions of Gd and Sm on the glass-forming ability (GFA) of Cu-Zr-Al alloys is investigated here. The rationale for these additions is the fact that the atomic size distribution can increase GFA by changing the topology of the alloy as a function of cluster stability, which is tied to the electronegativity and ionic and covalent nature of alloys. Ingots with nominal compositions of Cu40Zr49Al10.5Gd0.5, Cu40Zr49Al10.5Sm0.5 and Cu39Zr50Al9Gd2 were prepared by arc-melting and rapidly quenched ribbons were produced by the melt-spinning technique. Bulk samples with a thickness of up to 10 mm were also produced by casting, using a wedge-shaped copper mold. The samples were characterized by differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy. The three compositions showed a fully amorphous structure in the ribbons and a predominantly homogeneous amorphous structure with a thickness of up to 10 mm, although some gadolinium oxide crystals as well as samarium compounds were found to be scattered in the amorphous matrix in 5-mm-thick samples. The amorphous phases in the alloys showed high thermal stability with a supercooled liquid region (ΔTx) of about 70 K.

Saved in:
Bibliographic Details
Main Authors: Aliaga,Luis César Rodríguez, Mazzer,Eric Marchezini, Bolfarini,Claudemiro, Botta-Filho,Walter José, Kiminami,Claudio Shyinti
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000500005
Tags: Add Tag
No Tags, Be the first to tag this record!