A study of the application of residue from burned biomass in mortars

The goal of this work was to study the viability of burnt biomass residue from a pulp and paper plant applied as a raw material for mortar used in the construction industry. The waste - bottom ash - was incorporated into the mortar as a mineral addition to the Portland cement. The effect of the waste's grain size on the properties of mortars containing 10% in volume of waste was investigated, as well as the effect of the concentration of waste with grain size under 0.15 mm. The samples were evaluated after 28 days of aging by uniaxial compression, leaching test and scanning electron microscopy. These characterization techniques indicated that the properties of the mortars depend on the concentration, granulation and size distribution of the waste in the mortar's structure. Furthermore, some chemical elements may be present in stabilized and/or encapsulated form in the cement matrix.

Saved in:
Bibliographic Details
Main Authors: Gemelli,Enori, Cruz,Arthur Adelino de Freitas, Camargo,Nelson Heriberto Almeida
Format: Digital revista
Language:English
Published: ABM, ABC, ABPol 2004
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392004000400007
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this work was to study the viability of burnt biomass residue from a pulp and paper plant applied as a raw material for mortar used in the construction industry. The waste - bottom ash - was incorporated into the mortar as a mineral addition to the Portland cement. The effect of the waste's grain size on the properties of mortars containing 10% in volume of waste was investigated, as well as the effect of the concentration of waste with grain size under 0.15 mm. The samples were evaluated after 28 days of aging by uniaxial compression, leaching test and scanning electron microscopy. These characterization techniques indicated that the properties of the mortars depend on the concentration, granulation and size distribution of the waste in the mortar's structure. Furthermore, some chemical elements may be present in stabilized and/or encapsulated form in the cement matrix.