Predicción de precios de productos de Pinus spp. con modelos ARIMA

En el noreste argentino se encuentra el polo forestal de mayor importancia del país, concentrado en las provincias de Misiones y ­Corrientes, siendo Pinus spp. L. la de mayor producción, las cuales abastecen a gran número de actividades industriales. Esto evidencia la necesidad de aplicar herramientas de gestión forestal para tomar mejores decisiones de inversión y manejo de los montes. Los modelos de gestión forestal suelen utilizar distintas técnicas, entre ellas simulación, basadas en investigación operativa, y econométricas. Generalmente, las técnicas econométricas suelen ser utilizadas para proyecciones de precios y retornos. Una clase importante de modelos con datos longitudinales es la familia de los modelos autorregresivos de media móvil, conocidos como ARIMA, por sus siglas en inglés, generalmente aplicados para describir tendencias y generar predicciones a partir de valores pasados de las series. En particular, la variación de precios forestales es una de las principales fuentes de incertidumbre en la planificación forestal. Sin embargo, es escasa aún la aplicación de técnicas y modelos de predicción en el área forestal, especialmente a nivel sudamericano. Los modelos ARIMA exhiben buen desempeño predictivo en el corto plazo, aunque pierden capacidad de pronóstico en horizontes alejados y presentan algunos otros inconvenientes. Se propone un modelo autorregresivo de media móvil (ARIMA) basado en la metodología de Box-Jenkins para predecir los precios de cuatro productos de Pinus spp. para el noreste argentino. Para ello se utilizan series temporales de precios correspondientes al periodo julio 2002-septiembre 2013. Los modelos propuestos predicen precios futuros con errores de predicción entre 0,9% y 1,8%.

Saved in:
Bibliographic Details
Main Authors: Broz,Diego R., Viego,Valentina N.
Format: Digital revista
Language:Spanish / Castilian
Published: Instituto de Ecología A.C. 2014
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712014000100004
Tags: Add Tag
No Tags, Be the first to tag this record!