El componente social de la amenaza híbrida y su detección con modelos bayesianos
Resumen Las sociedades contemporáneas están cada vez más condicionadas por el desarrollo de la tecnología informática. Esa tendencia deja entrever un panorama en el que cada ser humano se identifica por el binomio persona-computadora, mientras quela mayor informatización de la vida civil está generando ingentes cantidades de datos que son susceptibles de ser gestionados con fines bélicos. El objetivo de este artículo es abordar la utilidad potencial de las redes bayesianas como herramientas destinadas a la monitorización y detección temprana de ataques híbridos de carácter sociala escala global. Como conclusión, planteamos que el uso de la inferencia y las redes bayesianas es útil para monitorear, detectar y supervisar el componente social de las amenazas híbridas a escala global por medio del análisis de las redes sociales.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | Spanish / Castilian |
Published: |
Facultad Latinoamericana de Ciencias Sociales- FLACSO-Sede Ecuador
2019
|
Online Access: | http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-42992019000200057 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resumen Las sociedades contemporáneas están cada vez más condicionadas por el desarrollo de la tecnología informática. Esa tendencia deja entrever un panorama en el que cada ser humano se identifica por el binomio persona-computadora, mientras quela mayor informatización de la vida civil está generando ingentes cantidades de datos que son susceptibles de ser gestionados con fines bélicos. El objetivo de este artículo es abordar la utilidad potencial de las redes bayesianas como herramientas destinadas a la monitorización y detección temprana de ataques híbridos de carácter sociala escala global. Como conclusión, planteamos que el uso de la inferencia y las redes bayesianas es útil para monitorear, detectar y supervisar el componente social de las amenazas híbridas a escala global por medio del análisis de las redes sociales. |
---|