SYNTHESIS, SPECTRAL CHARACTERIZATION AND THERMAL BEHAVIOUR OF NEW METAL(II) COMPLEXES WITH SCHIFF BASE DERIVED FROM AMOXICILLIN

Metal complexes of Schiff base derived from different antibiotics are widely employed as biological active materials, especially as antibacterial agents. Two new metal (II) complexes with the Schiff, base (HL) derived from amoxicillin and salicylaldehyde were synthesized and investigated using elemental analysis, spectroscopic techniques (IR and UV-Vis), conductometric and magnetic measurements. The IR spectra illustrated a bidentate ligand which coordinates through phenolic oxygen atom and imino nitrogen atom from azomethine bond. UV-Vis spectrophotometry showed the characteristic adsorption bands corresponding to an octahedral geometry for both metal complexes. The general formula established from experimental data was found to be [ML2(H2O)2] (M=Co(II) and Ni(II)). This composition was further confirmed by thermal analysis and their thermal stability in nitrogen atmosphere was investigated. Antibacterial study showed that the efficiency of metal complexes is higher than the one found for the free Schiff base ligand.

Saved in:
Bibliographic Details
Main Authors: REISS,AURORA, SAMIDE,ADRIANA, CIOBANU,GEORGETA, DABULEANU,IRINA
Format: Digital revista
Language:English
Published: Sociedad Chilena de Química 2015
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072015000300021
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal complexes of Schiff base derived from different antibiotics are widely employed as biological active materials, especially as antibacterial agents. Two new metal (II) complexes with the Schiff, base (HL) derived from amoxicillin and salicylaldehyde were synthesized and investigated using elemental analysis, spectroscopic techniques (IR and UV-Vis), conductometric and magnetic measurements. The IR spectra illustrated a bidentate ligand which coordinates through phenolic oxygen atom and imino nitrogen atom from azomethine bond. UV-Vis spectrophotometry showed the characteristic adsorption bands corresponding to an octahedral geometry for both metal complexes. The general formula established from experimental data was found to be [ML2(H2O)2] (M=Co(II) and Ni(II)). This composition was further confirmed by thermal analysis and their thermal stability in nitrogen atmosphere was investigated. Antibacterial study showed that the efficiency of metal complexes is higher than the one found for the free Schiff base ligand.