Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro

This study was carried out to evaluate the effects of three Chinese herbal medicines (CHMs) on rumen fermentation, methane emission and population of ruminal microbes using an in vitro gas production technique. Three healthy wethers of Dazu Black goats with similar bodyweights and permanent rumen fistulae were utilized as donors of ruminal fluid. The three botanical medicines were cablin patchouli herb (CPH), atractylodes rhizome (AR) and Amur cork tree (AC). Each CHM was added at a level of 25 g/kg to the substrate dry matter. In vitro gas production was recorded, and methane concentration was determined at 12 and 24 hours of incubation. After 24 hours, the incubation was stopped, and the inoculants were measured for pH, ammonia nitrogen and volatile fatty acids (VFAs) concentrations. Total deoxyribonucleic acid of ruminal microbes was extracted from the inocula, and populations were determined by a real-time quantitative polymerase chain reaction. Populations of total rumen methanogens, protozoa, total fungi, Ruminococcus albus, Fibrobacter succinogenes and Ruminococcus flavefaciens were expressed as a proportion of total rumen bacterial 16S ribosomal deoxyribonucleic acid. Compared to the control, CPH decreased gas production and methane production at 12 and 24 hours of incubation, and inhibited methanogens and total fungi growth. AR decreased acetate to propionate ratio, and methanogens and total fungi populations, but increased propionate molar proportion. AC decreased total VFA concentration, acetate to propionate ratio, gas production at 12 and 24 hours of incubation, methane production at 12 and 24 hours of incubation, and methanogens and total fungi growth, but increased the propionate molar proportion. In conclusion, CPH and AC both suppressed methanogenesis significantly, and the suppression was mediated primarily via the direct action against the rumen microbes involved in methane formation. AC also indirectly abates methane release by occupying the hydrogen (H2) normally utilized for methanogenesis.

Saved in:
Bibliographic Details
Main Authors: Wang,W.J., Wang,S.P., Luo,D.M., Zhao,X.L., Yin,M.J., Zhou,C.F., Liu,G.W.
Format: Digital revista
Language:English
Published: The South African Society for Animal Science (SASAS) 2019
Online Access:http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0375-15892019000100007
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scielo:S0375-15892019000100007
record_format ojs
spelling oai:scielo:S0375-158920190001000072019-04-10Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitroWang,W.J.Wang,S.P.Luo,D.M.Zhao,X.L.Yin,M.J.Zhou,C.F.Liu,G.W. In vitro gas production methane rumen fermentation parameter rumen microbes This study was carried out to evaluate the effects of three Chinese herbal medicines (CHMs) on rumen fermentation, methane emission and population of ruminal microbes using an in vitro gas production technique. Three healthy wethers of Dazu Black goats with similar bodyweights and permanent rumen fistulae were utilized as donors of ruminal fluid. The three botanical medicines were cablin patchouli herb (CPH), atractylodes rhizome (AR) and Amur cork tree (AC). Each CHM was added at a level of 25 g/kg to the substrate dry matter. In vitro gas production was recorded, and methane concentration was determined at 12 and 24 hours of incubation. After 24 hours, the incubation was stopped, and the inoculants were measured for pH, ammonia nitrogen and volatile fatty acids (VFAs) concentrations. Total deoxyribonucleic acid of ruminal microbes was extracted from the inocula, and populations were determined by a real-time quantitative polymerase chain reaction. Populations of total rumen methanogens, protozoa, total fungi, Ruminococcus albus, Fibrobacter succinogenes and Ruminococcus flavefaciens were expressed as a proportion of total rumen bacterial 16S ribosomal deoxyribonucleic acid. Compared to the control, CPH decreased gas production and methane production at 12 and 24 hours of incubation, and inhibited methanogens and total fungi growth. AR decreased acetate to propionate ratio, and methanogens and total fungi populations, but increased propionate molar proportion. AC decreased total VFA concentration, acetate to propionate ratio, gas production at 12 and 24 hours of incubation, methane production at 12 and 24 hours of incubation, and methanogens and total fungi growth, but increased the propionate molar proportion. In conclusion, CPH and AC both suppressed methanogenesis significantly, and the suppression was mediated primarily via the direct action against the rumen microbes involved in methane formation. AC also indirectly abates methane release by occupying the hydrogen (H2) normally utilized for methanogenesis.The South African Society for Animal Science (SASAS)South African Journal of Animal Science v.49 n.1 20192019-01-01journal articletext/htmlhttp://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0375-15892019000100007en
institution SCIELO
collection OJS
country Sudáfrica
countrycode ZA
component Revista
access En linea
databasecode rev-scielo-za
tag revista
region África del Sur
libraryname SciELO
language English
format Digital
author Wang,W.J.
Wang,S.P.
Luo,D.M.
Zhao,X.L.
Yin,M.J.
Zhou,C.F.
Liu,G.W.
spellingShingle Wang,W.J.
Wang,S.P.
Luo,D.M.
Zhao,X.L.
Yin,M.J.
Zhou,C.F.
Liu,G.W.
Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
author_facet Wang,W.J.
Wang,S.P.
Luo,D.M.
Zhao,X.L.
Yin,M.J.
Zhou,C.F.
Liu,G.W.
author_sort Wang,W.J.
title Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
title_short Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
title_full Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
title_fullStr Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
title_full_unstemmed Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
title_sort effect of chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro
description This study was carried out to evaluate the effects of three Chinese herbal medicines (CHMs) on rumen fermentation, methane emission and population of ruminal microbes using an in vitro gas production technique. Three healthy wethers of Dazu Black goats with similar bodyweights and permanent rumen fistulae were utilized as donors of ruminal fluid. The three botanical medicines were cablin patchouli herb (CPH), atractylodes rhizome (AR) and Amur cork tree (AC). Each CHM was added at a level of 25 g/kg to the substrate dry matter. In vitro gas production was recorded, and methane concentration was determined at 12 and 24 hours of incubation. After 24 hours, the incubation was stopped, and the inoculants were measured for pH, ammonia nitrogen and volatile fatty acids (VFAs) concentrations. Total deoxyribonucleic acid of ruminal microbes was extracted from the inocula, and populations were determined by a real-time quantitative polymerase chain reaction. Populations of total rumen methanogens, protozoa, total fungi, Ruminococcus albus, Fibrobacter succinogenes and Ruminococcus flavefaciens were expressed as a proportion of total rumen bacterial 16S ribosomal deoxyribonucleic acid. Compared to the control, CPH decreased gas production and methane production at 12 and 24 hours of incubation, and inhibited methanogens and total fungi growth. AR decreased acetate to propionate ratio, and methanogens and total fungi populations, but increased propionate molar proportion. AC decreased total VFA concentration, acetate to propionate ratio, gas production at 12 and 24 hours of incubation, methane production at 12 and 24 hours of incubation, and methanogens and total fungi growth, but increased the propionate molar proportion. In conclusion, CPH and AC both suppressed methanogenesis significantly, and the suppression was mediated primarily via the direct action against the rumen microbes involved in methane formation. AC also indirectly abates methane release by occupying the hydrogen (H2) normally utilized for methanogenesis.
publisher The South African Society for Animal Science (SASAS)
publishDate 2019
url http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0375-15892019000100007
work_keys_str_mv AT wangwj effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT wangsp effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT luodm effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT zhaoxl effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT yinmj effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT zhoucf effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
AT liugw effectofchineseherbalmedicinesonrumenfermentationmethanogenesisandmicrobialflorainvitro
_version_ 1756006562299641856