ADSORPTION OF NANOWOLLASTONITE ON CELLULOSE SURFACE: EFFECTS ON PHYSICAL AND MECHANICAL PROPERTIES OF MEDIUM-DENSITY FIBERBOARD (MDF)

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.

Saved in:
Bibliographic Details
Main Authors: Taghiyari,Hamid Reza, Majidi,Roya, Jahangiri,Asghar
Format: Digital revista
Language:English
Published: UFLA - Universidade Federal de Lavras 2016
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-77602016000200215
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.