On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics
A nonequilibrium statistical operator (NSO) is built for classical sistems using a field theory in classical phase space, which is but a classical version of the thermofield dynamics formalism. The approach developed here starts with a second-quantized version of this phase-space field theory. Then elements of symmetry are analysed and invariants of the theory are introduced. The local conservation laws are derived and used to make explicit NSO. Such a method is applied to derive the Fokker-Planck-Kramers equation.
Saved in:
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Física
1997
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331997000400025 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scielo:S0103-97331997000400025 |
---|---|
record_format |
ojs |
spelling |
oai:scielo:S0103-973319970004000251999-06-14On the Nonequilibrium Statistical Operator and Classical Thermofield DynamicsSilva,Lourival M. daSantana,Ademir E.Vianna,J. David M.A nonequilibrium statistical operator (NSO) is built for classical sistems using a field theory in classical phase space, which is but a classical version of the thermofield dynamics formalism. The approach developed here starts with a second-quantized version of this phase-space field theory. Then elements of symmetry are analysed and invariants of the theory are introduced. The local conservation laws are derived and used to make explicit NSO. Such a method is applied to derive the Fokker-Planck-Kramers equation.info:eu-repo/semantics/openAccessSociedade Brasileira de FísicaBrazilian Journal of Physics v.27 n.4 19971997-12-01info:eu-repo/semantics/articletext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331997000400025en10.1590/S0103-97331997000400025 |
institution |
SCIELO |
collection |
OJS |
country |
Brasil |
countrycode |
BR |
component |
Revista |
access |
En linea |
databasecode |
rev-scielo-br |
tag |
revista |
region |
America del Sur |
libraryname |
SciELO |
language |
English |
format |
Digital |
author |
Silva,Lourival M. da Santana,Ademir E. Vianna,J. David M. |
spellingShingle |
Silva,Lourival M. da Santana,Ademir E. Vianna,J. David M. On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
author_facet |
Silva,Lourival M. da Santana,Ademir E. Vianna,J. David M. |
author_sort |
Silva,Lourival M. da |
title |
On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
title_short |
On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
title_full |
On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
title_fullStr |
On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
title_full_unstemmed |
On the Nonequilibrium Statistical Operator and Classical Thermofield Dynamics |
title_sort |
on the nonequilibrium statistical operator and classical thermofield dynamics |
description |
A nonequilibrium statistical operator (NSO) is built for classical sistems using a field theory in classical phase space, which is but a classical version of the thermofield dynamics formalism. The approach developed here starts with a second-quantized version of this phase-space field theory. Then elements of symmetry are analysed and invariants of the theory are introduced. The local conservation laws are derived and used to make explicit NSO. Such a method is applied to derive the Fokker-Planck-Kramers equation. |
publisher |
Sociedade Brasileira de Física |
publishDate |
1997 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331997000400025 |
work_keys_str_mv |
AT silvalourivalmda onthenonequilibriumstatisticaloperatorandclassicalthermofielddynamics AT santanaademire onthenonequilibriumstatisticaloperatorandclassicalthermofielddynamics AT viannajdavidm onthenonequilibriumstatisticaloperatorandclassicalthermofielddynamics |
_version_ |
1756407194529562624 |