Feldspar Ceramic Strength and The Reinforcing Effect by Adhesive Cementation Under Accelerated Aging

Abstract This study evaluated the effect of the accelerated artificial aging (AAA) on feldspar ceramic strength and the reinforcing effect promoted by adhesive cementation with resin luting agent. One hundred twenty feldspar ceramic disks were obtained. Sixty disks were acid-etched, silanized, and coated with an experimental resin luting agent simulating the adhesive luting procedures. Four groups were created (n=30): uncoated ceramic (control group), uncoated ceramic submitted to AAA, ceramic coated with resin luting agent, and coated ceramic submitted to AAA. Biaxial flexural testing with ball-on-ring setup was carried out. Biaxial flexural strength (s bf , MPa), characteristic strength (s 0 , MPa), and Weibull modulus (m) were calculated for axial positions z=0 (ceramic surface) and z=−t2 (luting agent surface). Data of s bf at positions z=0 and z=-t2 were separately submitted to statistical analyses (a=0.05). The uncoated ceramic submitted to AAA had no significant difference in s bf and s 0 compared with the control group. Resin coating of the ceramic increased s bf and s 0 at z=0. The AAA increased the s bf and s 0 for the resin-coated ceramic specimens at z=0 and also the s 0 at axial position z=-t2. The structural reliability at z=0 and z=-t2 was not influenced by the variables tested. In conclusion, resin coating improved the mechanical strength of the feldspar ceramic. The AAA procedure was not effective in aging the uncoated or resin-coated feldspar ceramic specimens.

Saved in:
Bibliographic Details
Main Authors: Barbon,Fabíola Jardim, Moraes,Rafael Ratto, Boscato,Noéli, Alessandretti,Rodrigo, Spazzin,Aloísio Oro
Format: Digital revista
Language:English
Published: Fundação Odontológica de Ribeirão Preto 2018
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-64402018000200202
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study evaluated the effect of the accelerated artificial aging (AAA) on feldspar ceramic strength and the reinforcing effect promoted by adhesive cementation with resin luting agent. One hundred twenty feldspar ceramic disks were obtained. Sixty disks were acid-etched, silanized, and coated with an experimental resin luting agent simulating the adhesive luting procedures. Four groups were created (n=30): uncoated ceramic (control group), uncoated ceramic submitted to AAA, ceramic coated with resin luting agent, and coated ceramic submitted to AAA. Biaxial flexural testing with ball-on-ring setup was carried out. Biaxial flexural strength (s bf , MPa), characteristic strength (s 0 , MPa), and Weibull modulus (m) were calculated for axial positions z=0 (ceramic surface) and z=−t2 (luting agent surface). Data of s bf at positions z=0 and z=-t2 were separately submitted to statistical analyses (a=0.05). The uncoated ceramic submitted to AAA had no significant difference in s bf and s 0 compared with the control group. Resin coating of the ceramic increased s bf and s 0 at z=0. The AAA increased the s bf and s 0 for the resin-coated ceramic specimens at z=0 and also the s 0 at axial position z=-t2. The structural reliability at z=0 and z=-t2 was not influenced by the variables tested. In conclusion, resin coating improved the mechanical strength of the feldspar ceramic. The AAA procedure was not effective in aging the uncoated or resin-coated feldspar ceramic specimens.