Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation

In this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.

Saved in:
Bibliographic Details
Main Authors: Pereira,Eufrásia S., Chagas,Marcelo A., Rocha,Willian R.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scielo:S0103-50532019000300571
record_format ojs
spelling oai:scielo:S0103-505320190003005712019-02-14Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical InvestigationPereira,Eufrásia S.Chagas,Marcelo A.Rocha,Willian R. density functional theory calculations ruthenium-based metallodrugs reduction potential competitive biological reactions solvent effects electronic structure calculations In this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.info:eu-repo/semantics/openAccessSociedade Brasileira de QuímicaJournal of the Brazilian Chemical Society v.30 n.3 20192019-03-01info:eu-repo/semantics/articletext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571en10.21577/0103-5053.20180206
institution SCIELO
collection OJS
country Brasil
countrycode BR
component Revista
access En linea
databasecode rev-scielo-br
tag revista
region America del Sur
libraryname SciELO
language English
format Digital
author Pereira,Eufrásia S.
Chagas,Marcelo A.
Rocha,Willian R.
spellingShingle Pereira,Eufrásia S.
Chagas,Marcelo A.
Rocha,Willian R.
Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
author_facet Pereira,Eufrásia S.
Chagas,Marcelo A.
Rocha,Willian R.
author_sort Pereira,Eufrásia S.
title Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_short Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_full Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_fullStr Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_full_unstemmed Reduction Potential of RuIII-Based Complexes with Potential Antitumor Activity and Thermodynamics of their Hydrolysis Reactions and Interactions with Possible Biological Targets: a Theoretical Investigation
title_sort reduction potential of ruiii-based complexes with potential antitumor activity and thermodynamics of their hydrolysis reactions and interactions with possible biological targets: a theoretical investigation
description In this article density functional theory (DFT)-based calculations were employed to investigate the electrochemistry of the antitumor ruthenium complexes trans-tetrachloro(dimethylsulfoxide)imidazole ruthenate(III) (NAMI-A) and trans-[tetrachlorobis(1.-indazole)ruthenate(III)] (KP1019), their hydrolysis products as well as their interactions with biological S-donors and N-donors targets as cysteine, glutathione and guanine nucleobase. The compounds exhibit different electrochemical behavior upon hydrolysis. While the reduction potential of NAMI-A increases up to 0.8 V upon hydrolysis, the reduction potential of KP1019 remains almost constant after the first hydrolysis. NAMI-A and KP1019 complexes have thermodynamic preference to be reduced prior to undergoing hydrolysis and, strong preference to undergo successive hydrolysis instead of interacting with the S-donor and N-donor ligands. Interaction with S-donor ligands in the unprotonated form is highly unfavorable, with the free energy in solution (ΔGsol) ≥ 18 kcal mol-1. For both complexes, the interaction with the guanine and glutathione are of the same magnitude (ΔGsol ca. –0.6 kcal mol-1) meaning that these ligands can compete for binding to the metallodrug.
publisher Sociedade Brasileira de Química
publishDate 2019
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532019000300571
work_keys_str_mv AT pereiraeufrasias reductionpotentialofruiiibasedcomplexeswithpotentialantitumoractivityandthermodynamicsoftheirhydrolysisreactionsandinteractionswithpossiblebiologicaltargetsatheoreticalinvestigation
AT chagasmarceloa reductionpotentialofruiiibasedcomplexeswithpotentialantitumoractivityandthermodynamicsoftheirhydrolysisreactionsandinteractionswithpossiblebiologicaltargetsatheoreticalinvestigation
AT rochawillianr reductionpotentialofruiiibasedcomplexeswithpotentialantitumoractivityandthermodynamicsoftheirhydrolysisreactionsandinteractionswithpossiblebiologicaltargetsatheoreticalinvestigation
_version_ 1756403761120542720