Modification of Vietnam Natural Rubber via Graft Copolymerization with Styrene
Graft copolymerization of styrene onto deproteinized natural rubber (DPNR) using tert-butyl hydroperoxide (TBHPO) and tetraethylene pentamine (TEPA) as redox initiator have been investigated. The effects of initiator and monomer concentration on conversion and grafting efficiency were studied. The dynamic mechanical and thermal properties of the graft copolymer were investigated over the wide range of temperatures. It is shown that a high value of storage modulus for the graft copolymer, which was about 25 times as high as that of DPNR, was achieved. The graft copolymer (DPNR-graft -PS) showed the outstanding tensile strength and stable thermal properties. These enhancements were attributed to the interaction between NR and polystyrene as a result of the graft copolymerization. Morphology observation by transmission electron micrograph (TEM) revealed that the core-shell arrangement of the DPNR-graft -PS with about 30 nm in thickness of polystyrene nano-layer was achieved.
Main Authors: | , , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Química
2017
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017000400669 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graft copolymerization of styrene onto deproteinized natural rubber (DPNR) using tert-butyl hydroperoxide (TBHPO) and tetraethylene pentamine (TEPA) as redox initiator have been investigated. The effects of initiator and monomer concentration on conversion and grafting efficiency were studied. The dynamic mechanical and thermal properties of the graft copolymer were investigated over the wide range of temperatures. It is shown that a high value of storage modulus for the graft copolymer, which was about 25 times as high as that of DPNR, was achieved. The graft copolymer (DPNR-graft -PS) showed the outstanding tensile strength and stable thermal properties. These enhancements were attributed to the interaction between NR and polystyrene as a result of the graft copolymerization. Morphology observation by transmission electron micrograph (TEM) revealed that the core-shell arrangement of the DPNR-graft -PS with about 30 nm in thickness of polystyrene nano-layer was achieved. |
---|