Sulfite induced autoxidation of Cu(II)/tetra/ penta and hexaglycine complexes: spectrophotometric and rotating-ring-disk glassy carbon electrode studies and analytical potentialities

The oxidation of Cu(II) complexes with tetra, penta and hexaglycine in borate buffer aqueous solution, by dissolved oxygen is strongly accelerated by sulfite. The formation of Cu(III) complexes with maximum absorbances at 250 nm (e = 9000 mol-1 L cm-1) and 365 nm (e = 7120 mol-1 L cm-1) was also characterized by using rotating ring-disk voltammetry, whose anodic and cathodic components were observed in voltammograms recorded in solutions containing Cu(II). Voltammograms, obtained at various rotation speeds, showed that the Cu(III) species electrochemically generated is not stable over the entire time window of the experiment and in solutions containing tetraglycine the overall limiting current is controlled by the kinetics of an equilibrium involving Cu(II) species.The calculated first order rate constant of the decomposition was 4.37x10-3 s-1. Electrochemical experiments carried out in Cu(II) solutions after the addition of relatively small amounts of sulfite demonstrated that the Cu(III) species formed in the chemical reaction is the same as the one collected at the ring electrode when Cu(II) is oxidized at the disk electrode in ring-disk voltammetry. The concentration of Cu(III) complexes is proportional to the amount of added sulfite and the results indicated that indirect analytical methods for sulfite may be developed by means of spectrophotometric or amperometric detection of the chemically generated product.

Saved in:
Bibliographic Details
Main Authors: Alipázaga,Maria V., Bonifácio,Rodrigo L., Kosminsky,Luis, Bertotti,Mauro, Coichev,Nina
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2003
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532003000500003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The oxidation of Cu(II) complexes with tetra, penta and hexaglycine in borate buffer aqueous solution, by dissolved oxygen is strongly accelerated by sulfite. The formation of Cu(III) complexes with maximum absorbances at 250 nm (e = 9000 mol-1 L cm-1) and 365 nm (e = 7120 mol-1 L cm-1) was also characterized by using rotating ring-disk voltammetry, whose anodic and cathodic components were observed in voltammograms recorded in solutions containing Cu(II). Voltammograms, obtained at various rotation speeds, showed that the Cu(III) species electrochemically generated is not stable over the entire time window of the experiment and in solutions containing tetraglycine the overall limiting current is controlled by the kinetics of an equilibrium involving Cu(II) species.The calculated first order rate constant of the decomposition was 4.37x10-3 s-1. Electrochemical experiments carried out in Cu(II) solutions after the addition of relatively small amounts of sulfite demonstrated that the Cu(III) species formed in the chemical reaction is the same as the one collected at the ring electrode when Cu(II) is oxidized at the disk electrode in ring-disk voltammetry. The concentration of Cu(III) complexes is proportional to the amount of added sulfite and the results indicated that indirect analytical methods for sulfite may be developed by means of spectrophotometric or amperometric detection of the chemically generated product.