The effects of inhaled NO on plasma vasoactive factor and CTnI level in rabbits with acute massive pulmonary embolism

Abstract Purpose: To investigate changes in the plasma concentrations of cardiac troponin I (CTnI), thromboxane A2 (TXA2), prostaglandin I2 (PGI2) and endothelin-1 (ET-1) in rabbits with massive pulmonary embolism (AMPE) and the impact of nitric oxide inhalation (NOI) on these indices. Methods: A total of 30 Japanese rabbits were used to construct an MPE model and were divided into 3 groups equally (n=10), including an EXP group (undergoing modeling alone), an NOI group (receiving NOI 2 h post-modeling) and a CON group (receiving intravenous physiological saline). Results: In the model group, plasma concentration of CTnI peaked at 16 h following modeling (0.46±0.10 µg/ml) and significantly decreased following NOI. Plasma levels of TXB2, PGI2 and ET-1 peaked at 12, 16 and 8 h following modeling, respectively, and significantly decreased at different time points (0, 2, 4, 8, 12, 16, 20 and 24 h) following NOI. A significant correlation was observed between the peak plasma CTnI concentration and peak TXB2, 6-keto prostaglandin F1α and ET-1 concentrations in the model and NOI groups. Conclusion: Increases in plasma TXA2, PGI2 and ET-1 levels causes myocardial damage in a rabbit model of AMPE; however, NOI effectively down regulates the plasma concentration of these molecules to produce a myocardial-protective effect.

Saved in:
Bibliographic Details
Main Authors: Zhang,Zeming, Li,Zheng, Chen,Lu, Wang,Yancun
Format: Digital revista
Language:English
Published: Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia 2018
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502018000700577
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Purpose: To investigate changes in the plasma concentrations of cardiac troponin I (CTnI), thromboxane A2 (TXA2), prostaglandin I2 (PGI2) and endothelin-1 (ET-1) in rabbits with massive pulmonary embolism (AMPE) and the impact of nitric oxide inhalation (NOI) on these indices. Methods: A total of 30 Japanese rabbits were used to construct an MPE model and were divided into 3 groups equally (n=10), including an EXP group (undergoing modeling alone), an NOI group (receiving NOI 2 h post-modeling) and a CON group (receiving intravenous physiological saline). Results: In the model group, plasma concentration of CTnI peaked at 16 h following modeling (0.46±0.10 µg/ml) and significantly decreased following NOI. Plasma levels of TXB2, PGI2 and ET-1 peaked at 12, 16 and 8 h following modeling, respectively, and significantly decreased at different time points (0, 2, 4, 8, 12, 16, 20 and 24 h) following NOI. A significant correlation was observed between the peak plasma CTnI concentration and peak TXB2, 6-keto prostaglandin F1α and ET-1 concentrations in the model and NOI groups. Conclusion: Increases in plasma TXA2, PGI2 and ET-1 levels causes myocardial damage in a rabbit model of AMPE; however, NOI effectively down regulates the plasma concentration of these molecules to produce a myocardial-protective effect.