Soil phosphorus dynamics and availability and irrigated coffee yield

Research data have demonstrated that the P demand of coffee (Coffea arabica L.) is similar to that of short-cycle crops. In this context, the objective of this study was to evaluate the influence of annual P fertilization on the soil P status by the quantification of labile, moderately labile, low-labile, and total P fractions, associating them to coffee yield. The experiment was installed in a typical dystrophic Red Latosol (Oxisol) cultivated with irrigated coffee annually fertilized with triple superphosphate at rates of 0, 50, 100, 200, and 400 kg ha-1 P2O5. Phosphorus fractions were determined in two soil layers: 0-10 and 10-20 cm. The P leaf contents and coffee yield in 2008 were also evaluated. The irrigated coffee responded to phosphate fertilization in the production phase with gains of up to 138 % in coffee yield by the application of 400 kg ha-1 P2O5. Coffee leaf P contents increased with P applications and stabilized around 1.98 g kg-1, at rates of 270 kg ha-1 P2O5 and higher. Soil P application caused, in general, an increase in bioavailable P fractions, which constitute the main soil P reservoir.

Saved in:
Bibliographic Details
Main Authors: Reis,Thiago Henrique Pereira, Guimarães,Paulo Tácito Gontijo, Furtini Neto,Antônio Eduardo, Guerra,Antônio Fernando, Curi,Nilton
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Ciência do Solo 2011
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832011000200019
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research data have demonstrated that the P demand of coffee (Coffea arabica L.) is similar to that of short-cycle crops. In this context, the objective of this study was to evaluate the influence of annual P fertilization on the soil P status by the quantification of labile, moderately labile, low-labile, and total P fractions, associating them to coffee yield. The experiment was installed in a typical dystrophic Red Latosol (Oxisol) cultivated with irrigated coffee annually fertilized with triple superphosphate at rates of 0, 50, 100, 200, and 400 kg ha-1 P2O5. Phosphorus fractions were determined in two soil layers: 0-10 and 10-20 cm. The P leaf contents and coffee yield in 2008 were also evaluated. The irrigated coffee responded to phosphate fertilization in the production phase with gains of up to 138 % in coffee yield by the application of 400 kg ha-1 P2O5. Coffee leaf P contents increased with P applications and stabilized around 1.98 g kg-1, at rates of 270 kg ha-1 P2O5 and higher. Soil P application caused, in general, an increase in bioavailable P fractions, which constitute the main soil P reservoir.