Trajectory tracking for the chaotic pendulum using PI control law

This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.

Saved in:
Bibliographic Details
Main Authors: Perez,J., Perez,J. P., Rdz,F., Flores,A.
Format: Digital revista
Language:English
Published: Sociedad Mexicana de Física 2013
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scielo:S0035-001X2013000500010
record_format ojs
spelling oai:scielo:S0035-001X20130005000102013-12-04Trajectory tracking for the chaotic pendulum using PI control lawPerez,J.Perez,J. P.Rdz,F.Flores,A. Neural networks trajectory tracking adaptive control Lyapunov function stability and PI control This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.info:eu-repo/semantics/openAccessSociedad Mexicana de FísicaRevista mexicana de física v.59 n.5 20132013-10-01info:eu-repo/semantics/articletext/htmlhttp://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010en
institution SCIELO
collection OJS
country México
countrycode MX
component Revista
access En linea
databasecode rev-scielo-mx
tag revista
region America del Norte
libraryname SciELO
language English
format Digital
author Perez,J.
Perez,J. P.
Rdz,F.
Flores,A.
spellingShingle Perez,J.
Perez,J. P.
Rdz,F.
Flores,A.
Trajectory tracking for the chaotic pendulum using PI control law
author_facet Perez,J.
Perez,J. P.
Rdz,F.
Flores,A.
author_sort Perez,J.
title Trajectory tracking for the chaotic pendulum using PI control law
title_short Trajectory tracking for the chaotic pendulum using PI control law
title_full Trajectory tracking for the chaotic pendulum using PI control law
title_fullStr Trajectory tracking for the chaotic pendulum using PI control law
title_full_unstemmed Trajectory tracking for the chaotic pendulum using PI control law
title_sort trajectory tracking for the chaotic pendulum using pi control law
description This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.
publisher Sociedad Mexicana de Física
publishDate 2013
url http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010
work_keys_str_mv AT perezj trajectorytrackingforthechaoticpendulumusingpicontrollaw
AT perezjp trajectorytrackingforthechaoticpendulumusingpicontrollaw
AT rdzf trajectorytrackingforthechaoticpendulumusingpicontrollaw
AT floresa trajectorytrackingforthechaoticpendulumusingpicontrollaw
_version_ 1756219970744745984