Trajectory tracking for the chaotic pendulum using PI control law
This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.
Saved in:
Main Authors: | , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedad Mexicana de Física
2013
|
Online Access: | http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scielo:S0035-001X2013000500010 |
---|---|
record_format |
ojs |
spelling |
oai:scielo:S0035-001X20130005000102013-12-04Trajectory tracking for the chaotic pendulum using PI control lawPerez,J.Perez,J. P.Rdz,F.Flores,A. Neural networks trajectory tracking adaptive control Lyapunov function stability and PI control This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system.info:eu-repo/semantics/openAccessSociedad Mexicana de FísicaRevista mexicana de física v.59 n.5 20132013-10-01info:eu-repo/semantics/articletext/htmlhttp://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010en |
institution |
SCIELO |
collection |
OJS |
country |
México |
countrycode |
MX |
component |
Revista |
access |
En linea |
databasecode |
rev-scielo-mx |
tag |
revista |
region |
America del Norte |
libraryname |
SciELO |
language |
English |
format |
Digital |
author |
Perez,J. Perez,J. P. Rdz,F. Flores,A. |
spellingShingle |
Perez,J. Perez,J. P. Rdz,F. Flores,A. Trajectory tracking for the chaotic pendulum using PI control law |
author_facet |
Perez,J. Perez,J. P. Rdz,F. Flores,A. |
author_sort |
Perez,J. |
title |
Trajectory tracking for the chaotic pendulum using PI control law |
title_short |
Trajectory tracking for the chaotic pendulum using PI control law |
title_full |
Trajectory tracking for the chaotic pendulum using PI control law |
title_fullStr |
Trajectory tracking for the chaotic pendulum using PI control law |
title_full_unstemmed |
Trajectory tracking for the chaotic pendulum using PI control law |
title_sort |
trajectory tracking for the chaotic pendulum using pi control law |
description |
This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is proposed to ensure the tracking of the nonlinear system. |
publisher |
Sociedad Mexicana de Física |
publishDate |
2013 |
url |
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2013000500010 |
work_keys_str_mv |
AT perezj trajectorytrackingforthechaoticpendulumusingpicontrollaw AT perezjp trajectorytrackingforthechaoticpendulumusingpicontrollaw AT rdzf trajectorytrackingforthechaoticpendulumusingpicontrollaw AT floresa trajectorytrackingforthechaoticpendulumusingpicontrollaw |
_version_ |
1756219970744745984 |