Field of Moduli and Generalized Fermat Curves
A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zp n of conformal automorphisms with S/H being the Riemann sphere with exactly n+1 cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by \operatornameAutH(S) the normalizer of H in \operatornameAut(S). If p is a prime, and either (i) n=4 or (ii) n is even and \operatornameAutH(S)/H is not a non-trivial cyclic group or (iii) n is odd and \operatornameAutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ∈ {3,4}, then we also compute the field of moduli of S.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad Nacional de Colombia y Sociedad Colombiana de Matemáticas
2013
|
Online Access: | http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262013000200007 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:scielo:S0034-74262013000200007 |
---|---|
record_format |
ojs |
spelling |
oai:scielo:S0034-742620130002000072014-02-14Field of Moduli and Generalized Fermat CurvesHIDALGO,RUBEN A.REYES-CAROCCA,SEBASTIÁNVALDÉS,MARÍA ELISA Algebraic curves Riemann surfaces Field of moduli Field of definition A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zp n of conformal automorphisms with S/H being the Riemann sphere with exactly n+1 cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by \operatornameAutH(S) the normalizer of H in \operatornameAut(S). If p is a prime, and either (i) n=4 or (ii) n is even and \operatornameAutH(S)/H is not a non-trivial cyclic group or (iii) n is odd and \operatornameAutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ∈ {3,4}, then we also compute the field of moduli of S.info:eu-repo/semantics/openAccessUniversidad Nacional de Colombia y Sociedad Colombiana de MatemáticasRevista Colombiana de Matemáticas v.47 n.2 20132013-12-01info:eu-repo/semantics/articletext/htmlhttp://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262013000200007en |
institution |
SCIELO |
collection |
OJS |
country |
Colombia |
countrycode |
CO |
component |
Revista |
access |
En linea |
databasecode |
rev-scielo-co |
tag |
revista |
region |
America del Sur |
libraryname |
SciELO |
language |
English |
format |
Digital |
author |
HIDALGO,RUBEN A. REYES-CAROCCA,SEBASTIÁN VALDÉS,MARÍA ELISA |
spellingShingle |
HIDALGO,RUBEN A. REYES-CAROCCA,SEBASTIÁN VALDÉS,MARÍA ELISA Field of Moduli and Generalized Fermat Curves |
author_facet |
HIDALGO,RUBEN A. REYES-CAROCCA,SEBASTIÁN VALDÉS,MARÍA ELISA |
author_sort |
HIDALGO,RUBEN A. |
title |
Field of Moduli and Generalized Fermat Curves |
title_short |
Field of Moduli and Generalized Fermat Curves |
title_full |
Field of Moduli and Generalized Fermat Curves |
title_fullStr |
Field of Moduli and Generalized Fermat Curves |
title_full_unstemmed |
Field of Moduli and Generalized Fermat Curves |
title_sort |
field of moduli and generalized fermat curves |
description |
A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zp n of conformal automorphisms with S/H being the Riemann sphere with exactly n+1 cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by \operatornameAutH(S) the normalizer of H in \operatornameAut(S). If p is a prime, and either (i) n=4 or (ii) n is even and \operatornameAutH(S)/H is not a non-trivial cyclic group or (iii) n is odd and \operatornameAutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ∈ {3,4}, then we also compute the field of moduli of S. |
publisher |
Universidad Nacional de Colombia y Sociedad Colombiana de Matemáticas |
publishDate |
2013 |
url |
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262013000200007 |
work_keys_str_mv |
AT hidalgorubena fieldofmoduliandgeneralizedfermatcurves AT reyescaroccasebastian fieldofmoduliandgeneralizedfermatcurves AT valdesmariaelisa fieldofmoduliandgeneralizedfermatcurves |
_version_ |
1755932850828345344 |