Characterization of ground motions using recurrence plots

The current analysis of earthquakes is typically based on linear mathematical models that may fail to describe and forecast particular behaviors, because in many cases the data complexity may induce a highly non linear behavior. In this paper the implementation of an alternative method for seismic time series analysis is presented. The RPs (Recurrence Plots) enables recognition and treatment of measured accelerations. An RP obtained from seismic data allows a more efficient interpretation of the ground motions and this explanation contributes to characterize materials and responses. The nonlinear attributes from RPs analysis can be used as filters to reveal patterns or be combined to predict a seismic property. Automated seismic data characterization, based on nonlinear seismic attributes, could rewrite the rules of earthquake phenomena interpretation. The objective of this work is to establish a new methodology for practical application of nonlinear dynamics in seismic pattern/attributes recognition, an evolving and challenging engineering field.

Saved in:
Bibliographic Details
Main Authors: García,Silvia R., Romo,Miguel P., Figueroa-Nazuno,Jesús
Format: Digital revista
Language:English
Published: Universidad Nacional Autónoma de México, Instituto de Geofísica 2013
Online Access:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692013000300002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current analysis of earthquakes is typically based on linear mathematical models that may fail to describe and forecast particular behaviors, because in many cases the data complexity may induce a highly non linear behavior. In this paper the implementation of an alternative method for seismic time series analysis is presented. The RPs (Recurrence Plots) enables recognition and treatment of measured accelerations. An RP obtained from seismic data allows a more efficient interpretation of the ground motions and this explanation contributes to characterize materials and responses. The nonlinear attributes from RPs analysis can be used as filters to reveal patterns or be combined to predict a seismic property. Automated seismic data characterization, based on nonlinear seismic attributes, could rewrite the rules of earthquake phenomena interpretation. The objective of this work is to establish a new methodology for practical application of nonlinear dynamics in seismic pattern/attributes recognition, an evolving and challenging engineering field.