Numerical model for predicting and evaluating sand production in weakly consolidated reservoirs
Abstract Sand production is a common phenomenon in oil and gas reservoirs, which occurs when reservoir fluids exert a sufficient drag force on reservoir rocks to erode the matrix. Numerical models for sand production have been used to understand the sanding mechanisms and forecast sand-production potential of formations to design well completion, optimize production, and prevent setbacks in future operations. This paper presents a mathematical model for defining the conditions of sanding onset as well as to predict and quantify the sand rate. We also introduce fluid-flow coupling and a geomechanical and sand-production model. By using the proposed model and a set of experimental data, sanding-related variables are analyzed, and a matching process for the simulated results and forecast analysis are performed. The results show that elastoplastic constitutive models are indispensable, and a clear relationship exists between the sanding and plastic strains.
Main Authors: | , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Universidad Nacional de Colombia
2022
|
Online Access: | http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532022000100054 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Sand production is a common phenomenon in oil and gas reservoirs, which occurs when reservoir fluids exert a sufficient drag force on reservoir rocks to erode the matrix. Numerical models for sand production have been used to understand the sanding mechanisms and forecast sand-production potential of formations to design well completion, optimize production, and prevent setbacks in future operations. This paper presents a mathematical model for defining the conditions of sanding onset as well as to predict and quantify the sand rate. We also introduce fluid-flow coupling and a geomechanical and sand-production model. By using the proposed model and a set of experimental data, sanding-related variables are analyzed, and a matching process for the simulated results and forecast analysis are performed. The results show that elastoplastic constitutive models are indispensable, and a clear relationship exists between the sanding and plastic strains. |
---|