Hypersurfaces with constant mean curvature and two principal curvatures in n+1

In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.

Saved in:
Bibliographic Details
Main Authors: Alías,Luis J., Almeida,Sebastião C. de, Brasil Jr.,Aldir
Format: Digital revista
Language:English
Published: Academia Brasileira de Ciências 2004
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:scielo:S0001-37652004000300003
record_format ojs
spelling oai:scielo:S0001-376520040003000032004-08-20Hypersurfaces with constant mean curvature and two principal curvatures in n+1Alías,Luis J.Almeida,Sebastião C. deBrasil Jr.,Aldir Hypersurfaces constant mean curvature Simons formula H(r)-torus In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.info:eu-repo/semantics/openAccessAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências v.76 n.3 20042004-09-01info:eu-repo/semantics/articletext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003en10.1590/S0001-37652004000300003
institution SCIELO
collection OJS
country Brasil
countrycode BR
component Revista
access En linea
databasecode rev-scielo-br
tag revista
region America del Sur
libraryname SciELO
language English
format Digital
author Alías,Luis J.
Almeida,Sebastião C. de
Brasil Jr.,Aldir
spellingShingle Alías,Luis J.
Almeida,Sebastião C. de
Brasil Jr.,Aldir
Hypersurfaces with constant mean curvature and two principal curvatures in n+1
author_facet Alías,Luis J.
Almeida,Sebastião C. de
Brasil Jr.,Aldir
author_sort Alías,Luis J.
title Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_short Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_full Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_fullStr Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_full_unstemmed Hypersurfaces with constant mean curvature and two principal curvatures in n+1
title_sort hypersurfaces with constant mean curvature and two principal curvatures in n+1
description In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.
publisher Academia Brasileira de Ciências
publishDate 2004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003
work_keys_str_mv AT aliasluisj hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinn1
AT almeidasebastiaocde hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinn1
AT brasiljraldir hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinn1
_version_ 1756371846453788672