Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato
Due to the significant impact of late blight (LB) (Phytophthora infestans [Mont.]) on tomato (Solanum lycopersicum L.), we investigated the interaction between fungicides and this disease to understand how some plant defense mechanisms are affected over time. Following a randomized design, we evaluated the synthesis of phenolic compounds (PHE) and the activity of phenylalanine ammonium lyase (PAL), peroxidases (POX) and superoxide dismutase (SOD). The experiment involved the application of fosetyl-Al and fluoxastrobin (fungicides with dual modes of action) on healthy and infected tomato plants. LB severity was assessed weekly and leaf samples were collected at various intervals for biochemical analysis. The Kruskal-Wallis test (α = 0.05) analyzed main effects of infection, fungicide, and time on response variables, followed by Bonferroni post hoc for significant group differences and regression models to evaluate variable effects over time. The application of fungicides had no effect on enzymatic activity or PHE accumulation. While PAL and SOD activities were not significantly affected by infection, POX activity was significantly higher in healthy plants (4793.8 U g-1 fresh weight) compared to infected plants (1858.1 U g-1 fresh weight). A complex interaction between PHE accumulation in relation to LB severity and time was observed, with a notable increase in PHE levels at 50 days after transplant when disease severity was between 25 and 50%. Future studies should consider including a broader range of genotypes and isolates of P. infestans, a more extensive set of biochemical responses, and evaluations of the overexpression of genes related to plant defense.
Main Authors: | , , , , |
---|---|
Format: | Digital revista |
Language: | eng |
Published: |
Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA)
2024
|
Online Access: | https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1434 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:oai.agrocienciauruguay.uy:article-1434 |
---|---|
record_format |
ojs |
institution |
UDELAR |
collection |
OJS |
country |
Uruguay |
countrycode |
UY |
component |
Revista |
access |
En linea |
databasecode |
rev-agrociencia-uy |
tag |
revista |
region |
America del Sur |
libraryname |
Biblioteca de la Facultad de Agronomía de la UDELAR de UY |
language |
eng |
format |
Digital |
author |
Enciso-Maldonado, Guillermo A. Lozoya-Saldaña, Hector Colinas-León, María Teresa Díaz-García, Gabriela Montoya-García, Cesar Omar |
spellingShingle |
Enciso-Maldonado, Guillermo A. Lozoya-Saldaña, Hector Colinas-León, María Teresa Díaz-García, Gabriela Montoya-García, Cesar Omar Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
author_facet |
Enciso-Maldonado, Guillermo A. Lozoya-Saldaña, Hector Colinas-León, María Teresa Díaz-García, Gabriela Montoya-García, Cesar Omar |
author_sort |
Enciso-Maldonado, Guillermo A. |
title |
Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
title_short |
Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
title_full |
Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
title_fullStr |
Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
title_full_unstemmed |
Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
title_sort |
fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato |
description |
Due to the significant impact of late blight (LB) (Phytophthora infestans [Mont.]) on tomato (Solanum lycopersicum L.), we investigated the interaction between fungicides and this disease to understand how some plant defense mechanisms are affected over time. Following a randomized design, we evaluated the synthesis of phenolic compounds (PHE) and the activity of phenylalanine ammonium lyase (PAL), peroxidases (POX) and superoxide dismutase (SOD). The experiment involved the application of fosetyl-Al and fluoxastrobin (fungicides with dual modes of action) on healthy and infected tomato plants. LB severity was assessed weekly and leaf samples were collected at various intervals for biochemical analysis. The Kruskal-Wallis test (α = 0.05) analyzed main effects of infection, fungicide, and time on response variables, followed by Bonferroni post hoc for significant group differences and regression models to evaluate variable effects over time. The application of fungicides had no effect on enzymatic activity or PHE accumulation. While PAL and SOD activities were not significantly affected by infection, POX activity was significantly higher in healthy plants (4793.8 U g-1 fresh weight) compared to infected plants (1858.1 U g-1 fresh weight). A complex interaction between PHE accumulation in relation to LB severity and time was observed, with a notable increase in PHE levels at 50 days after transplant when disease severity was between 25 and 50%. Future studies should consider including a broader range of genotypes and isolates of P. infestans, a more extensive set of biochemical responses, and evaluations of the overexpression of genes related to plant defense. |
publisher |
Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA) |
publishDate |
2024 |
url |
https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1434 |
work_keys_str_mv |
AT encisomaldonadoguillermoa fungicideslateblightinteractioninthesynthesisofphenoliccompoundsanddefenseenzymeactivityintomato AT lozoyasaldanahector fungicideslateblightinteractioninthesynthesisofphenoliccompoundsanddefenseenzymeactivityintomato AT colinasleonmariateresa fungicideslateblightinteractioninthesynthesisofphenoliccompoundsanddefenseenzymeactivityintomato AT diazgarciagabriela fungicideslateblightinteractioninthesynthesisofphenoliccompoundsanddefenseenzymeactivityintomato AT montoyagarciacesaromar fungicideslateblightinteractioninthesynthesisofphenoliccompoundsanddefenseenzymeactivityintomato AT encisomaldonadoguillermoa interaccionfungicidastizontardioenlasintesisdecompuestosfenolicosyactividaddeenzimasdedefensaentomate AT lozoyasaldanahector interaccionfungicidastizontardioenlasintesisdecompuestosfenolicosyactividaddeenzimasdedefensaentomate AT colinasleonmariateresa interaccionfungicidastizontardioenlasintesisdecompuestosfenolicosyactividaddeenzimasdedefensaentomate AT diazgarciagabriela interaccionfungicidastizontardioenlasintesisdecompuestosfenolicosyactividaddeenzimasdedefensaentomate AT montoyagarciacesaromar interaccionfungicidastizontardioenlasintesisdecompuestosfenolicosyactividaddeenzimasdedefensaentomate AT encisomaldonadoguillermoa interacaofungicidarequeimanasintesedecompostosfenolicoseatividadedeenzimasdedefesaemtomateiro AT lozoyasaldanahector interacaofungicidarequeimanasintesedecompostosfenolicoseatividadedeenzimasdedefesaemtomateiro AT colinasleonmariateresa interacaofungicidarequeimanasintesedecompostosfenolicoseatividadedeenzimasdedefesaemtomateiro AT diazgarciagabriela interacaofungicidarequeimanasintesedecompostosfenolicoseatividadedeenzimasdedefesaemtomateiro AT montoyagarciacesaromar interacaofungicidarequeimanasintesedecompostosfenolicoseatividadedeenzimasdedefesaemtomateiro |
_version_ |
1819155185714331648 |
spelling |
oai:oai.agrocienciauruguay.uy:article-14342024-11-26T11:38:06Z Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato Interacción fungicidas-tizón tardío en la síntesis de compuestos fenólicos y actividad de enzimas de defensa en tomate Interação fungicida-requeima na síntese de compostos fenólicos e atividade de enzimas de defesa em tomateiro Enciso-Maldonado, Guillermo A. Lozoya-Saldaña, Hector Colinas-León, María Teresa Díaz-García, Gabriela Montoya-García, Cesar Omar Phytophthora infestans Solanum lycopersicum fluoxastrobin fosetyl-Al Phytophthora infestans Solanum lycopersicum fluoxastrobina fosetil-Al Phytotphthora infestans Solanum lycopersicum fluoxastrobin fosetyl-Al Due to the significant impact of late blight (LB) (Phytophthora infestans [Mont.]) on tomato (Solanum lycopersicum L.), we investigated the interaction between fungicides and this disease to understand how some plant defense mechanisms are affected over time. Following a randomized design, we evaluated the synthesis of phenolic compounds (PHE) and the activity of phenylalanine ammonium lyase (PAL), peroxidases (POX) and superoxide dismutase (SOD). The experiment involved the application of fosetyl-Al and fluoxastrobin (fungicides with dual modes of action) on healthy and infected tomato plants. LB severity was assessed weekly and leaf samples were collected at various intervals for biochemical analysis. The Kruskal-Wallis test (α = 0.05) analyzed main effects of infection, fungicide, and time on response variables, followed by Bonferroni post hoc for significant group differences and regression models to evaluate variable effects over time. The application of fungicides had no effect on enzymatic activity or PHE accumulation. While PAL and SOD activities were not significantly affected by infection, POX activity was significantly higher in healthy plants (4793.8 U g-1 fresh weight) compared to infected plants (1858.1 U g-1 fresh weight). A complex interaction between PHE accumulation in relation to LB severity and time was observed, with a notable increase in PHE levels at 50 days after transplant when disease severity was between 25 and 50%. Future studies should consider including a broader range of genotypes and isolates of P. infestans, a more extensive set of biochemical responses, and evaluations of the overexpression of genes related to plant defense. Debido al impacto del tizón tardío (TT), causado por Phytophthora infestans, en el tomate (Solanum lycopersicum L.) se realizó un estudio sobre la interacción de fungicidas con la enfermedad y su efecto en defensas vegetales. Se realizó un experimento bajo un diseño experimental completamente al azar, donde se aplicaron fosetil-Al y fluoxastrobina, fungicidas de doble acción, a tomates sanos e infectados. Se evaluó la severidad del TT semanalmente y se tomaron muestras de hojas para analizar la síntesis de compuestos fenólicos y la actividad de enzimas como fenilalanina amonio liasa (PAL), peroxidasas (POX) y superóxido dismutasa (SOD). A través del análisis de Kruskal-Wallis y la prueba de comparación post hoc de Bonferroni se estudiaron los efectos de la infección, el fungicida y el tiempo. Los resultados mostraron que los fungicidas no afectaron la actividad enzimática ni la acumulación de compuestos fenólicos. La actividad de PAL y SOD no varió significativamente con la infección, mientras que la de POX fue mayor en plantas sanas. Se observó una relación compleja entre la acumulación de fenólicos, la severidad del TT y el tiempo, destacando un incremento en los fenólicos a los 50 días, cuando la enfermedad alcanzaba una severidad del 25-50 %. Futuras investigaciones deberían incluir más genotipos y aislamientos de P. infestans, un rango más amplio de respuestas bioquímicas y evaluaciones de sobreexpresión genética relacionada con la defensa vegetal. Devido ao impacto da requeima, causado por Phytophthora infestans, no tomate (Solanum lycopersicum L.), foi realizado um estudo sobre a interação dos fungicidas com a doença e seu efeito nas defesas vegetais. Um experimento foi conduzido sob um desenho experimental completamente ao acaso, onde foram aplicados fosetil-Al e fluoxastrobina, fungicidas de dupla ação, em tomates saudáveis e infectados. A severidade darequeima foi avaliada semanalmente e amostras de folhas foram coletadas para analisar a síntese de compostos fenólicos e a atividade de enzimas como fenilalanina amônio liase (PAL), peroxidases (POX) e superóxido dismutase (SOD). Através da análise de Kruskal-Wallis e do teste de comparação post hoc de Bonferroni, os efeitos da infecção, do fungicida e do tempo foram estudados. Os resultados mostraram que os fungicidas não afetaram a atividade enzimática nem a acumulação de compostos fenólicos. A atividade de PAL e SOD não variou significativamente com a infecção, enquanto a de POX foi maior em plantas saudáveis. Observou-se uma relação complexa entre a acumulação de fenólicos, a severidade da requeima e o tempo, destacando um aumento nos fenólicos aos 50 dias, quando a doença alcançava uma severidade de 25-50%. Futuras pesquisas deveriam incluir mais genótipos e isolados de P. infestans, uma gama mais ampla de respostas bioquímicas e avaliações de sobreexpressão genética relacionada à defesa vegetal. Coeditada entre Facultad de Agronomía - Udelar y el Instituto Nacional de Investigación Agropecuaria (INIA) 2024-06-10 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1434 10.31285/AGRO.28.1434 Agrociencia Uruguay; Vol. 28 (2024); e1434 Agrociencia Uruguay; Vol. 28 (2024); e1434 Agrociencia Uruguay; v. 28 (2024); e1434 2730-5066 eng https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1434/1748 /*ref*/Alia-Tejacal I, Colinas-León MT, Martínez-Damián MT, Soto-Hernández MR. Actores fisiológicos, bioquímicos yde calidad en frutos de Zapote Mamey (Pouteria sapota Jacq. H.E. Moore & Stearn) durante poscosecha. Rev Chapingo Ser Hortic. 2002;8(2):263-81. Doi: 10.5154/r.rchsh.2001.11.083. /*ref*/Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA. Class III peroxidases in plant defence reactions. J Exp Bot. 2009;60(2):377-90. Doi: 10.1093/jxb/ern277. /*ref*/Anand T, Chandrasekaran A, Kuttalam S, Raguchander T, Prakasam V, Samiyappan R. Association of some plant defense enzyme activities with systemic resistance to early leaf blight and leaf spot induced in tomato plants by azoxystrobin and Pseudomonas fluorescens. J Plant Interact. 2007;2(4):233-44. Doi: 10.1080/17429140701708985. /*ref*/Attia MS, Hashem AH, Badawy AA, Abdelaziz AM. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: Improving plant immunological, physiological and antifungal activities. Bot Stud. 2022;63(1):26. Doi: 10.1186/s40529-022-00357-6. /*ref*/Becktell MC, Daughtrey ML, Fry WE. Epidemiology and Management of Petunia and Tomato Late Blight in the Greenhouse. Plant Dis. 2005;89(9):1000-8. Doi: 10.1094/PD-89-1000. /*ref*/Beyer WF Jr, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161(2):559-66. Doi: 10.1016/0003-2697(87)90489-1. /*ref*/Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, Kamoun S. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J. 2006;48(2):165-76. Doi: 10.1111/j.1365-313X.2006.02866.x. /*ref*/de Jong M, van den Ackerveken G. Fungal and Oomycete Biotrophy. In: Molecular Aspects of Plant Disease Resistance. Oxford: Wiley-Blackwell; 2018. Doi: 10.1002/9781119312994.apr0364. /*ref*/Debona D, Rodrigues FA. A Strobilurin Fungicide Relieves Bipolaris oryzae-Induced Oxidative Stress in Rice. J Phytopathol. 2016;164(9):571-81. Doi: 10.1111/jph.12481. /*ref*/Di Marco S, Osti F, Calzarano F, Roberti R, Veronesi A, Amalfitano C. Effects of grapevine applications of fosetyl-aluminium formulations for downy mildew control on "esca" and associated fungi. Phytopathol Mediterr. 2011;50:S285-S299. /*ref*/Flurkley WH, Jen JJ. Peroxidase and polyphenol oxidase activities in developing peaches. J Food Sci. 1978;43(6):1826-8. Doi: 10.1111/j.1365-2621.1978.tb07424.x. /*ref*/Forbes GA, Morales JG, Restrepo S, Pérez W, Gamboa S, Ruiz R, Cedeno L, Fermin G, Andreu AB, Acuna I, Oliva R. Phytophthora infestans and Phytophthora andina on Solanaceous hosts in South America. In: Lamour K, editors. Phytophthora: A global perspective. Oxfordshire: CABI; 2013. p. 48-58. /*ref*/Fritz V, Tereucán G, Santander C, Contreras B, Cornejo P, Ferreira PAA, Ruiz A. Effect of Inoculation with Arbuscular Mycorrhizal Fungi and Fungicide Application on the Secondary Metabolism of Solanum tuberosum Leaves. Plants (Basel). 2022;11(3):278. Doi: 10.3390/plants11030278. /*ref*/Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-30. Doi: 10.1016/j.plaphy.2010.08.016. /*ref*/Henfling JW. El tizón tardfo de la papa: Phytophthora infestans. Lima: Centro Internacional de la Papa; 1987. 25p. /*ref*/Ivanov AA, Ukladov EO, Golubeva TS. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J Fungi (Basel). 2021;7(12):1071. Doi: 10.3390/jof7121071. /*ref*/Kuzniak E, Skłodowska M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta. 2005;222(1):192-200. Doi: 10.1007/s00425-005-1514-8. /*ref*/Leadbeater A, Staub T. Exploitation of Induced Resistance: A Commercial Perspective. In: Walters DR, Newton AC, Lyon GD, editors. Induced Resistance for Plant Defense. Oxford: Wiley Blackwell; 2014. p. 300-15. Doi: 10.1002/9781118371848.ch13. /*ref*/Lozoya-Saldaña H, Rivera-Hinojosa R, Colinas-León MT. Fenoles, Peroxidasa y fenilalanina amonio-lyasa: Su relación con la resistencia genética de clones de papa (Solamun tuberosum L.) contra el tizón tardío (Phytophthora infestans Mont. De Bary). Agrociencia [Internet]. 2007 [cited 2024 May 29];41(4):479-89. Availabe from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952007000400479 /*ref*/Lyon GD. Agents That Can Elicit Induced Resistance. In: Walters DR, Newton AC, Lyon GD, editors. Induced resistance for plant defense. Oxford: Wiley Blackwell; 2014. p. 11-40. Doi: 10.1002/9781118371848.ch2. /*ref*/Martínez-Téllez MA, Lafuente MT. Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled ‹Fortune› mandarin fruit. J Plant Physiol. 1997;150(6):674-8. Doi: 10.1016/S0176-1617(97)80282-9. /*ref*/Nascimento J, Barrigossi JA. O papel das enzimas antioxidantes na defesa das plantas contra insetos herbívoros e fitopatógenos. Agrarian Academy [Internet]. 2014 [cited 2024 May 29];1(01):234-50. Availabe from: https://conhecer.org.br/ojs/index.php/agrarian/article/view/5225 /*ref*/Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel). 2022;9(1):52. Doi: 10.3390/jof9010052. /*ref*/Nowicki M, Foolad MR, Nowakowska M, Kozik EU. Potato and Tomato Late Blight Caused by Phytophthora infestans: An Overview of Pathology and Resistance Breeding. Plant Dis. 2012;96(1):4-17. Doi: 10.1094/PDIS-05-11-0458. /*ref*/Pirondi A, Brunelli A, Muzzi E, Collina M. Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). J Gen Plant Pathol. 2017;83:244-52. Doi: 10.1007/s10327-017-0717-8. /*ref*/Robledo-Esqueda MN, Saldaña HL, León MTC. Inducción de defensa en papa (Solanum tuberosum L.) CONTRA Phytophthora infestans Mont. de Bary por fungicidas. Interciencia [Internet]. 2012 [cited 2024 May 29];37(9):689-95. Availabe from: https://www.interciencia.net/wp-content/uploads/2018/01/689-c-LOZOYA-7.pdf /*ref*/Saeidian S, Ghasemifar E. Effect of Temperature on Guaiacol Peroxidase of Pyrus communis. Int Lett Nat Sc. 2013;5:46-51. Doi: 10.56431/p-k4l209. /*ref*/Serrano-Cervantes R, Lozoya-Saldaña H, Colinas y León MTB, Leyva-Mir SG. Algunas alteraciones enzimáticas en papa causadas por fungicidas. Rev Fitotec Mex. 2016;39(1):25-31. Availabe from: https://www.scielo.org.mx/pdf/rfm/v39n1/v39n1a6.pdf /*ref*/Shakya SK, Larsen MM, Cuenca-Condoy MM, Lozoya-Saldaña H, Grünwald NJ. Variation in Genetic Diversity of Phytophthora infestans Populations in Mexico from the Center of Origin Outwards. Plant Dis. 2018;102(8):1534-40. Doi: 10.1094/PDIS-11-17-1801-RE. /*ref*/Vallad GE. Tomato fungicides and other disease management products. In: Ozores-Hampton M, Snodgrass C, editors. Florida Tomato Institute Proceedings. Florida: University of Florida; 2011. p. 47. /*ref*/Venancio WS, Rodrigues MAT, Begliomini E, de Souza NL. Physiological effects of strobilurin fungicides on plants. Publicatio UEPG. 2003;9(03). Doi: 10.5212/publicatio.v9i03.814. /*ref*/Volke HV. Estimación de funciones de respuesta para información de tipo no experimental, mediante regresión. Montecillo: Colegio de Postgraduados; 2008. 113p. /*ref*/Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. Pestic Biochem Physiol. 2022;188:105225. Doi: 10.1016/j.pestbp.2022.105225. /*ref*/Waterman PG, Mole S. Analysis on phenolic plant metabolites. Oxford: Blackwell Scientific Publications; 1994. 238p. /*ref*/Xuanli J, Zhenqi L, Zhensheng K. The recent progress of research on peroxidase in plant disease resistance. J Northwest Sci-Tech Univ Agric For. 2001;29(6):124-9. Copyright (c) 2024 Agrociencia Uruguay https://creativecommons.org/licenses/by/4.0 |