Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo

Problem addressed: Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for foodassociated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Objective: Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. Methods and results: The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 108 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. Conclusions: These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment.

Saved in:
Bibliographic Details
Main Authors: Martorelli, Luisina, Albanese, Adriana Andrea, Vilte, Daniel Alejandro, Cantet, Rodolfo Juan Carlos, Bentancor, Adriana Beatriz, Zolezzi, Gisela, Chinen, Isabel, Ibarra, Cristina E., Rivas, Marta, Mercado, Elsa Cristina, Cataldi, Angel Adrian
Format: info:eu-repo/semantics/article biblioteca
Language:eng
Published: 2017-09
Subjects:Enfermedades de los Animales, Escherichia Coli, Ganado Bovino, Experimentación In Vitro, Experimentación In Vivo, Animal Disesase, Cattle, In Vitro Experimentation, In Vivo Experimentation,
Online Access:http://hdl.handle.net/20.500.12123/1487
http://www.sciencedirect.com/science/article/pii/S0378113517306466
https://doi.org/10.1016/j.vetmic.2017.06.021
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Problem addressed: Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for foodassociated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Objective: Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. Methods and results: The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 108 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. Conclusions: These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment.