Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize

Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are su ering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.

Saved in:
Bibliographic Details
Main Authors: Miedaner, Thomas, Galiano-Carneiro Boeven, Ana Luisa, Sewodor Gaikpa, David, Kistner, María Belén, Grote, Cathérine Pauline
Format: info:ar-repo/semantics/artículo biblioteca
Language:eng
Published: MDPI 2020-12-19
Subjects:Plant Breeding, Blight, Disease Resistance, Genetic Resources, Wheat, Maize, Plant Diseases, Fitomejoramiento, Tizón, Septoria, Leptosphaeria nodorum, Gibberella, Resistencia a la Enfermedad, Recursos Genéticos, Trigo, Triticum aestivum, Maiz, Zea mays, Enfermedades de las Plantas,
Online Access:http://hdl.handle.net/20.500.12123/10261
https://www.mdpi.com/1422-0067/21/24
https://doi.org/10.3390/ijms21249717
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:localhost:20.500.12123-10261
record_format koha
institution INTA AR
collection DSpace
country Argentina
countrycode AR
component Bibliográfico
access En linea
databasecode dig-inta-ar
tag biblioteca
region America del Sur
libraryname Biblioteca Central del INTA Argentina
language eng
topic Plant Breeding
Blight
Disease Resistance
Genetic Resources
Wheat
Maize
Plant Diseases
Fitomejoramiento
Tizón
Septoria
Leptosphaeria nodorum
Gibberella
Resistencia a la Enfermedad
Recursos Genéticos
Trigo
Triticum aestivum
Maiz
Zea mays
Enfermedades de las Plantas
Plant Breeding
Blight
Disease Resistance
Genetic Resources
Wheat
Maize
Plant Diseases
Fitomejoramiento
Tizón
Septoria
Leptosphaeria nodorum
Gibberella
Resistencia a la Enfermedad
Recursos Genéticos
Trigo
Triticum aestivum
Maiz
Zea mays
Enfermedades de las Plantas
spellingShingle Plant Breeding
Blight
Disease Resistance
Genetic Resources
Wheat
Maize
Plant Diseases
Fitomejoramiento
Tizón
Septoria
Leptosphaeria nodorum
Gibberella
Resistencia a la Enfermedad
Recursos Genéticos
Trigo
Triticum aestivum
Maiz
Zea mays
Enfermedades de las Plantas
Plant Breeding
Blight
Disease Resistance
Genetic Resources
Wheat
Maize
Plant Diseases
Fitomejoramiento
Tizón
Septoria
Leptosphaeria nodorum
Gibberella
Resistencia a la Enfermedad
Recursos Genéticos
Trigo
Triticum aestivum
Maiz
Zea mays
Enfermedades de las Plantas
Miedaner, Thomas
Galiano-Carneiro Boeven, Ana Luisa
Sewodor Gaikpa, David
Kistner, María Belén
Grote, Cathérine Pauline
Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
description Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are su ering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
format info:ar-repo/semantics/artículo
topic_facet Plant Breeding
Blight
Disease Resistance
Genetic Resources
Wheat
Maize
Plant Diseases
Fitomejoramiento
Tizón
Septoria
Leptosphaeria nodorum
Gibberella
Resistencia a la Enfermedad
Recursos Genéticos
Trigo
Triticum aestivum
Maiz
Zea mays
Enfermedades de las Plantas
author Miedaner, Thomas
Galiano-Carneiro Boeven, Ana Luisa
Sewodor Gaikpa, David
Kistner, María Belén
Grote, Cathérine Pauline
author_facet Miedaner, Thomas
Galiano-Carneiro Boeven, Ana Luisa
Sewodor Gaikpa, David
Kistner, María Belén
Grote, Cathérine Pauline
author_sort Miedaner, Thomas
title Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
title_short Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
title_full Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
title_fullStr Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
title_full_unstemmed Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
title_sort genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize
publisher MDPI
publishDate 2020-12-19
url http://hdl.handle.net/20.500.12123/10261
https://www.mdpi.com/1422-0067/21/24
https://doi.org/10.3390/ijms21249717
work_keys_str_mv AT miedanerthomas genomicsassistedbreedingforquantitativediseaseresistancesinsmallgraincerealsandmaize
AT galianocarneiroboevenanaluisa genomicsassistedbreedingforquantitativediseaseresistancesinsmallgraincerealsandmaize
AT sewodorgaikpadavid genomicsassistedbreedingforquantitativediseaseresistancesinsmallgraincerealsandmaize
AT kistnermariabelen genomicsassistedbreedingforquantitativediseaseresistancesinsmallgraincerealsandmaize
AT grotecatherinepauline genomicsassistedbreedingforquantitativediseaseresistancesinsmallgraincerealsandmaize
_version_ 1756008151909400577
spelling oai:localhost:20.500.12123-102612021-09-15T14:15:18Z Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize Miedaner, Thomas Galiano-Carneiro Boeven, Ana Luisa Sewodor Gaikpa, David Kistner, María Belén Grote, Cathérine Pauline Plant Breeding Blight Disease Resistance Genetic Resources Wheat Maize Plant Diseases Fitomejoramiento Tizón Septoria Leptosphaeria nodorum Gibberella Resistencia a la Enfermedad Recursos Genéticos Trigo Triticum aestivum Maiz Zea mays Enfermedades de las Plantas Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are su ering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed. Generar conocimiento impulsado por la genómica abre una manera de acelerar la reproducción de resistencias proceso por mapeo de familias o poblaciones y selección genómica. Los requisitos previos importantes son grandes poblaciones que se analizan genómicamente mediante matrices de marcadores de densidad media a alta y extensas fenotipado en ubicaciones y años de las mismas poblaciones. Esto último es importante para capacitar a un modelo genómico que se utiliza para predecir valores genómicos estimados de reproducción de fenotípicamente no probados genotipos. Después de revisar las características específicas de las resistencias cuantitativas y las características genómicas básicas técnicas, las posibilidades de reproducción asistida por genómica se evalúan para seis patosistemas con hongos hemi-biotróficos: cereales de grano pequeño / tizón de la cabeza por Fusarium (FHB), trigo / mancha de Septoria tritici (STB) y la mancha de Septoria nodorum (SNB), pudrición de la mazorca de maíz / Gibberella (GER) y pudrición de la mazorca por Fusarium (FER), maíz / tizón de la hoja del maíz del norte (NCLB). Por lo general, todas las resistencias cuantitativas a las enfermedades son causadas por cientos de QTL esparcidos por todo el genoma, pero a menudo disponibles en hotspots como se ejemplifica para Resistencia a NCLB en maíz. Debido a que todos los cultivos padecen muchas enfermedades, la resistencia a múltiples enfermedades (MDR) es un objetivo atractivo que puede seleccionarse mediante MDR QTL específico. Finalmente, la integración de datos genómicos en el proceso de mejoramiento para la introgresión de recursos genéticos y para la mejora. Estación Experimental Agropecuaria Pergamino Fil: Miedaner, Thomas. University of Hohenheim. State Plant Breeding Institute; Alemania Fil: Galiano-Carneiro Boeven, Ana Luisa. University of Hohenheim. State Plant Breeding Institute; Alemania Fil: Galiano-Carneiro Boeven, Ana Luisa. Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA; Alemania Fil: Sewodor Gaikpa, David. University of Hohenheim. State Plant Breeding Institute; Alemania Fil: Kistner, Maria Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina Fil: Kistner, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kistner, María Belén. University of Hohenheim. State Plant Breeding Institute; Alemania Fil: Grote, Cathérine Pauline. University of Hohenheim. State Plant Breeding Institute; Alemania 2021-09-15T14:06:43Z 2021-09-15T14:06:43Z 2020-12-19 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/10261 https://www.mdpi.com/1422-0067/21/24 1422-0067 https://doi.org/10.3390/ijms21249717 eng info:eu-repograntAgreement/INTA/PNCYO-1127021/AR./Inocuidad de la producción de grano en los principales cultivos de cereales y oleaginosas. info:eu-repo/semantics/openAccess application/pdf MDPI International Journal Molecular Science 21 (24) : 9717. (2020)