Reescritura de términos y sustituciones explícitas

La operación de sustitución constituye un engranaje básico en los fundamentos de la teoría de lenguajes de programación. Juega un rol central en el lambda cálculo (por ende, en lenguajes de programación funcional), en unificación de primer orden y de orden superior (por ende, en lenguajes de programación basados en el paradigma lógico), en modalidades de pasaje de parámetros (por ende, en lenguajes de programación imperativos), etc. Recientemente, investigadores en informática se han interesado en el pasaje de la noción usual de la sustitución, atómica, y de gruesa granularidad, hacia una noción más refinada, de más fina granularidad. La noción de sustitución es transportada del metalenguaje (nuestro lenguaje de discurso) al lenguaje objeto (nuestro lenguaje de estudio). Como consecuencia de ello se obtienen los llamados cálculos de sustituciones explícitas. Estos son de sumo interés a la hora de estudiar la interpretación operacional de los formalismos en cuestión y constituyen los objetos de interés de esta tesis. Se desarrollan los siguientes tres ejes de estudio: Primero, se consideran estrategias de reescritura perpetuas en lambda cálculos con sustituciones explícitas. Estas son estrategias de reescritura que preservan la posibilidad de reducciones infinitas. Se propone una caracterización inductiva del conjunto de términos que no poseen reducciones infinitas (los llamados fuertemente normalizantes). Un lambda cálculo polimórfico con sustituciones explícitas también es analizado, incluyendo propiedades tales como subject reduction y normalización fuerte. Segundo, colocamos el ς-cálculo de M. Abadi and L. Cardelli enriquecido con sustituciones explícitas bajo el microscopio. Este cálculo se encuentra en un nivel semejante de abstracción al lambda cálculo pero se basa en objetos en lugar de funciones. Propiedades tales como simulación del lambda cálculo, confluencia y preservación de la normalización fuerte (aquellos términos que son fuertemente normalizantes en ς también lo son en ς con sustituciones explícitas) son consideradas. Finalmente, dirigimos nuestra atención a la tarea de relacionar la reescritura de orden superior con aquella de primer orden. Fijamos una variante de los ERS (apodados SERSdb) de Z. Khasidashvili como nuestro formalismo de orden superior de partida y definimos un proceso de conversión que permite codificar cualquier SERSdb como un sistema de reescritura de primer orden. En este último, cada paso de reescritura se lleva a cabo módulo una teoría ecuacional determinada por un cálculo de sustituciones explícitas. La misma se formula de manera genérica a través de una presentación de cálculos de sustituciones explícitas basada en macros y axiomas sobre estas macros, parametrizando de esta manera al procedimiento de conversión sobre cualquier cálculo de sustituciones explícitas que obedece la presentación basada en macros. El procedimiento de conversión se encarga de codificar pattern matching de orden superior y sustitución en el entorno de reescritura de primer orden. Asimismo, propiedades que relacionan la noción de reescritura en el orden superior con aquella de primer orden son analizadas en detalle. Se identifica una clase de SERSdb para los cuales el sistema de primer orden resultante de su conversión no requiere una teoría ecuacional para implementar pattern matching de orden superior, bastando para ello matching sintáctico. También se argumenta que esta clase de sistemas de orden superior es apropiada para transferir resultados del entorno de reescritura de orden superior a aquella de primer orden. A modo de ejemplo no-trivial de ello, estudiamos la transferencia del teorema de standarización (fuerte).

Saved in:
Bibliographic Details
Main Author: Bonelli, Eduardo
Other Authors: Kesner, Delia
Format: info:eu-repo/semantics/doctoralThesis biblioteca
Language:eng
Published: Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Online Access:https://hdl.handle.net/20.500.12110/tesis_n3651_Bonelli
http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=aextesis&d=tesis_n3651_Bonelli_oai
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items