Soil Chemistry Aspects of Predicting Future Phosphorus Requirements in Sub-Saharan Africa

Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that Sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modeling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modeling predicts twice as much P required to 2050 as our new proposed model.

Saved in:
Bibliographic Details
Main Authors: Magnone, Daniel, Niasar, Vahid J., Bouwman, A.F., Beusen, A.H.W., van der Zee, S.E.A.T.M., Sattari, S.Z.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Sub-Saharan Africa, phosphorus, soil,
Online Access:https://research.wur.nl/en/publications/soil-chemistry-aspects-of-predicting-future-phosphorus-requiremen
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that Sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modeling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modeling predicts twice as much P required to 2050 as our new proposed model.