UAV based soil salinity assessment of cropland
Increased soil salinity is a significant agricultural problem that decreases yields for common agricultural crops. Its dynamics require cost and labour effective measurement techniques and widely acknowledged methods are not present yet. We investigated the potential of Unmanned Aerial Vehicle (UAV) remote sensing to measure salt stress in quinoa plants. Three different UAV sensors were used: a WIRIS thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS Light Detection and Ranging (LiDAR) scanner. Several vegetation indices, canopy temperature and LiDAR measured plant height were derived from the remote sensing data and their relation with ground measured parameters like salt treatment, stomatal conductance and actual plant height is analysed. The results show that widely used multispectral vegetation indices are not efficient in discriminating between salt affected and control quinoa plants. The hyperspectral Physiological Reflectance Index (PRI) performed best and showed a clear distinction between salt affected and treated plants. This distinction is also visible for LiDAR measured plant height, where salt treated plants were on average 10 cm shorter than control plants. Canopy temperature was significantly affected, though detection of this required an additional step in analysis – Normalised Difference Vegetation Index (NDVI) clustering. This step assured temperature comparison for equally vegetated pixels. Data combination of all three sensors in a Multiple Linear Regression model increased the prediction power and for the whole dataset R2 reached 0.46, with some subgroups reaching an R2 of 0.64. We conclude that UAV borne remote sensing is useful for measuring salt stress in plants and a combination of multiple measurement techniques is advised to increase the accuracy.
Main Authors: | , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Hyperspectral, LiDAR, Quinoa, Remote sensing, Soil salinity, Thermography, UAV, |
Online Access: | https://research.wur.nl/en/publications/uav-based-soil-salinity-assessment-of-cropland |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-541933 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-5419332024-10-30 Ivushkin, Konstantin Bartholomeus, Harm Bregt, Arnold K. Pulatov, Alim Franceschini, Marston H.D. Kramer, Henk van Loo, Eibertus N. Jaramillo Roman, Viviana Finkers, Richard Article/Letter to editor Geoderma 338 (2019) ISSN: 0016-7061 UAV based soil salinity assessment of cropland 2019 Increased soil salinity is a significant agricultural problem that decreases yields for common agricultural crops. Its dynamics require cost and labour effective measurement techniques and widely acknowledged methods are not present yet. We investigated the potential of Unmanned Aerial Vehicle (UAV) remote sensing to measure salt stress in quinoa plants. Three different UAV sensors were used: a WIRIS thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS Light Detection and Ranging (LiDAR) scanner. Several vegetation indices, canopy temperature and LiDAR measured plant height were derived from the remote sensing data and their relation with ground measured parameters like salt treatment, stomatal conductance and actual plant height is analysed. The results show that widely used multispectral vegetation indices are not efficient in discriminating between salt affected and control quinoa plants. The hyperspectral Physiological Reflectance Index (PRI) performed best and showed a clear distinction between salt affected and treated plants. This distinction is also visible for LiDAR measured plant height, where salt treated plants were on average 10 cm shorter than control plants. Canopy temperature was significantly affected, though detection of this required an additional step in analysis – Normalised Difference Vegetation Index (NDVI) clustering. This step assured temperature comparison for equally vegetated pixels. Data combination of all three sensors in a Multiple Linear Regression model increased the prediction power and for the whole dataset R2 reached 0.46, with some subgroups reaching an R2 of 0.64. We conclude that UAV borne remote sensing is useful for measuring salt stress in plants and a combination of multiple measurement techniques is advised to increase the accuracy. en application/pdf https://research.wur.nl/en/publications/uav-based-soil-salinity-assessment-of-cropland 10.1016/j.geoderma.2018.09.046 https://edepot.wur.nl/461792 Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV https://creativecommons.org/licenses/by-nc-nd/4.0/ Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV |
spellingShingle |
Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV Ivushkin, Konstantin Bartholomeus, Harm Bregt, Arnold K. Pulatov, Alim Franceschini, Marston H.D. Kramer, Henk van Loo, Eibertus N. Jaramillo Roman, Viviana Finkers, Richard UAV based soil salinity assessment of cropland |
description |
Increased soil salinity is a significant agricultural problem that decreases yields for common agricultural crops. Its dynamics require cost and labour effective measurement techniques and widely acknowledged methods are not present yet. We investigated the potential of Unmanned Aerial Vehicle (UAV) remote sensing to measure salt stress in quinoa plants. Three different UAV sensors were used: a WIRIS thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS Light Detection and Ranging (LiDAR) scanner. Several vegetation indices, canopy temperature and LiDAR measured plant height were derived from the remote sensing data and their relation with ground measured parameters like salt treatment, stomatal conductance and actual plant height is analysed. The results show that widely used multispectral vegetation indices are not efficient in discriminating between salt affected and control quinoa plants. The hyperspectral Physiological Reflectance Index (PRI) performed best and showed a clear distinction between salt affected and treated plants. This distinction is also visible for LiDAR measured plant height, where salt treated plants were on average 10 cm shorter than control plants. Canopy temperature was significantly affected, though detection of this required an additional step in analysis – Normalised Difference Vegetation Index (NDVI) clustering. This step assured temperature comparison for equally vegetated pixels. Data combination of all three sensors in a Multiple Linear Regression model increased the prediction power and for the whole dataset R2 reached 0.46, with some subgroups reaching an R2 of 0.64. We conclude that UAV borne remote sensing is useful for measuring salt stress in plants and a combination of multiple measurement techniques is advised to increase the accuracy. |
format |
Article/Letter to editor |
topic_facet |
Hyperspectral LiDAR Quinoa Remote sensing Soil salinity Thermography UAV |
author |
Ivushkin, Konstantin Bartholomeus, Harm Bregt, Arnold K. Pulatov, Alim Franceschini, Marston H.D. Kramer, Henk van Loo, Eibertus N. Jaramillo Roman, Viviana Finkers, Richard |
author_facet |
Ivushkin, Konstantin Bartholomeus, Harm Bregt, Arnold K. Pulatov, Alim Franceschini, Marston H.D. Kramer, Henk van Loo, Eibertus N. Jaramillo Roman, Viviana Finkers, Richard |
author_sort |
Ivushkin, Konstantin |
title |
UAV based soil salinity assessment of cropland |
title_short |
UAV based soil salinity assessment of cropland |
title_full |
UAV based soil salinity assessment of cropland |
title_fullStr |
UAV based soil salinity assessment of cropland |
title_full_unstemmed |
UAV based soil salinity assessment of cropland |
title_sort |
uav based soil salinity assessment of cropland |
url |
https://research.wur.nl/en/publications/uav-based-soil-salinity-assessment-of-cropland |
work_keys_str_mv |
AT ivushkinkonstantin uavbasedsoilsalinityassessmentofcropland AT bartholomeusharm uavbasedsoilsalinityassessmentofcropland AT bregtarnoldk uavbasedsoilsalinityassessmentofcropland AT pulatovalim uavbasedsoilsalinityassessmentofcropland AT franceschinimarstonhd uavbasedsoilsalinityassessmentofcropland AT kramerhenk uavbasedsoilsalinityassessmentofcropland AT vanlooeibertusn uavbasedsoilsalinityassessmentofcropland AT jaramilloromanviviana uavbasedsoilsalinityassessmentofcropland AT finkersrichard uavbasedsoilsalinityassessmentofcropland |
_version_ |
1816156117362802688 |