Genetic mapping in polyploids

Many of our most important crop species are polyploid – an unusual phenomenon whereby each chromosome is present in multiple copies (more than the usual two copies). The most common such arrangement is tetraploidy, where each chromosome is present four times. Plant species can tolerate this condition quite well (the same cannot be said of animals or humans). In fact, polyploidy can confer certain advantages such as larger fruits and flowers, seedless fruits (useful for fruit growers) or improved tolerance to environmental stresses. However, carrying multiple copies of each chromosome complicates things, particularly when crop breeders would like to use DNA information to help inform selection decisions. This PhD project looked at how DNA information of polyploids should be best analysed, developing methods and new software tools to achieve this. We analysed DNA information from polyploid crops such as potato, rose and chrysanthemum, yielding many novel insights and important results.

Saved in:
Bibliographic Details
Main Author: Bourke, Peter M.
Other Authors: Visser, R.G.F.
Format: Doctoral thesis biblioteca
Language:English
Published: Wageningen University
Subjects:Cum laude,
Online Access:https://research.wur.nl/en/publications/genetic-mapping-in-polyploids
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many of our most important crop species are polyploid – an unusual phenomenon whereby each chromosome is present in multiple copies (more than the usual two copies). The most common such arrangement is tetraploidy, where each chromosome is present four times. Plant species can tolerate this condition quite well (the same cannot be said of animals or humans). In fact, polyploidy can confer certain advantages such as larger fruits and flowers, seedless fruits (useful for fruit growers) or improved tolerance to environmental stresses. However, carrying multiple copies of each chromosome complicates things, particularly when crop breeders would like to use DNA information to help inform selection decisions. This PhD project looked at how DNA information of polyploids should be best analysed, developing methods and new software tools to achieve this. We analysed DNA information from polyploid crops such as potato, rose and chrysanthemum, yielding many novel insights and important results.