Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana
Exploiting genetic variation for more efficient photosynthesis is an underexplored route towards new crop varieties. This study demonstrates the genetic dissection of higher plant photosynthesis efficiency down to the genomic DNA level, by confirming that allelic sequence variation at the Arabidopsis thaliana YELLOW SEEDLING1 (YS1) gene explains natural diversity in photosynthesis acclimation to high irradiance. We use a genome-wide association study to identify quantitative trait loci (QTLs) involved in the Arabidopsis photosynthetic acclimation response. Candidate genes underlying the QTLs are prioritized according to functional clues regarding gene ontology, expression and function. Reverse genetics and quantitative complementation confirm the candidacy of YS1, which encodes a pentatrico-peptide-repeat (PPR) protein involved in RNA editing of plastid-encoded genes (anterograde signalling). Gene expression analysis and allele sequence comparisons reveal polymorphisms in a light-responsive element in the YS1 promoter that affect its expression, and that of its downstream targets, resulting in the variation in photosynthetic acclimation.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/natural-variation-of-yellow-seedling1-affects-photosynthetic-accl |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-529382 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-5293822024-10-30 Van Rooijen, Roxanne Kruijer, Willem Boesten, René Van Eeuwijk, Fred A. Harbinson, Jeremy Aarts, Mark G.M. Article/Letter to editor Nature Communications 8 (2017) 1 ISSN: 2041-1723 Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana 2017 Exploiting genetic variation for more efficient photosynthesis is an underexplored route towards new crop varieties. This study demonstrates the genetic dissection of higher plant photosynthesis efficiency down to the genomic DNA level, by confirming that allelic sequence variation at the Arabidopsis thaliana YELLOW SEEDLING1 (YS1) gene explains natural diversity in photosynthesis acclimation to high irradiance. We use a genome-wide association study to identify quantitative trait loci (QTLs) involved in the Arabidopsis photosynthetic acclimation response. Candidate genes underlying the QTLs are prioritized according to functional clues regarding gene ontology, expression and function. Reverse genetics and quantitative complementation confirm the candidacy of YS1, which encodes a pentatrico-peptide-repeat (PPR) protein involved in RNA editing of plastid-encoded genes (anterograde signalling). Gene expression analysis and allele sequence comparisons reveal polymorphisms in a light-responsive element in the YS1 promoter that affect its expression, and that of its downstream targets, resulting in the variation in photosynthetic acclimation. en application/pdf https://research.wur.nl/en/publications/natural-variation-of-yellow-seedling1-affects-photosynthetic-accl 10.1038/s41467-017-01576-3 https://edepot.wur.nl/426912 Life Science https://creativecommons.org/licenses/by/4.0/ Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Life Science Life Science |
spellingShingle |
Life Science Life Science Van Rooijen, Roxanne Kruijer, Willem Boesten, René Van Eeuwijk, Fred A. Harbinson, Jeremy Aarts, Mark G.M. Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
description |
Exploiting genetic variation for more efficient photosynthesis is an underexplored route towards new crop varieties. This study demonstrates the genetic dissection of higher plant photosynthesis efficiency down to the genomic DNA level, by confirming that allelic sequence variation at the Arabidopsis thaliana YELLOW SEEDLING1 (YS1) gene explains natural diversity in photosynthesis acclimation to high irradiance. We use a genome-wide association study to identify quantitative trait loci (QTLs) involved in the Arabidopsis photosynthetic acclimation response. Candidate genes underlying the QTLs are prioritized according to functional clues regarding gene ontology, expression and function. Reverse genetics and quantitative complementation confirm the candidacy of YS1, which encodes a pentatrico-peptide-repeat (PPR) protein involved in RNA editing of plastid-encoded genes (anterograde signalling). Gene expression analysis and allele sequence comparisons reveal polymorphisms in a light-responsive element in the YS1 promoter that affect its expression, and that of its downstream targets, resulting in the variation in photosynthetic acclimation. |
format |
Article/Letter to editor |
topic_facet |
Life Science |
author |
Van Rooijen, Roxanne Kruijer, Willem Boesten, René Van Eeuwijk, Fred A. Harbinson, Jeremy Aarts, Mark G.M. |
author_facet |
Van Rooijen, Roxanne Kruijer, Willem Boesten, René Van Eeuwijk, Fred A. Harbinson, Jeremy Aarts, Mark G.M. |
author_sort |
Van Rooijen, Roxanne |
title |
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
title_short |
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
title_full |
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
title_fullStr |
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
title_full_unstemmed |
Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana |
title_sort |
natural variation of yellow seedling1 affects photosynthetic acclimation of arabidopsis thaliana |
url |
https://research.wur.nl/en/publications/natural-variation-of-yellow-seedling1-affects-photosynthetic-accl |
work_keys_str_mv |
AT vanrooijenroxanne naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana AT kruijerwillem naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana AT boestenrene naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana AT vaneeuwijkfreda naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana AT harbinsonjeremy naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana AT aartsmarkgm naturalvariationofyellowseedling1affectsphotosyntheticacclimationofarabidopsisthaliana |
_version_ |
1816158170068811776 |