Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood : An Interlaboratory Ring Test

Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).

Saved in:
Bibliographic Details
Main Authors: Monsonis Centelles, Sandra, Hoefsloot, Huub C.J., Khakimov, Bekzod, Ebrahimi, Parvaneh, Lind, Mads V., Kristensen, Mette, De Roo, Niels, Jacobs, Doris M., Van Duynhoven, John, Cannet, Claire, Fang, Fang, Humpfer, Eberhard, Schäfer, Hartmut, Spraul, Manfred, Engelsen, Søren B., Smilde, Age K.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Life Science,
Online Access:https://research.wur.nl/en/publications/toward-reliable-lipoprotein-particle-predictions-from-nmr-spectra
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).