Genomic prediction of survival time in a population of brown laying hens showing cannibalistic behavior
Background: Mortality due to cannibalism causes both economic and welfare problems in laying hens. To limit mortality due to cannibalism, laying hens are often beak-trimmed, which is undesirable for animal welfare reasons. Genetic selection is an alternative strategy to increase survival and is more efficient by taking heritable variation that originates from social interactions into account, which are modelled as the so-called indirect genetic effects (IGE). Despite the considerable heritable variation in survival time due to IGE, genetic improvement of survival time in laying hens is still challenging because the detected heritable variation of the trait with IGE is still limited, ranging from 0.06 to 0.26, and individuals that are still alive at the end of the recording period are censored. Furthermore, survival time records are available late in life and only on females. To cope with these challenges, we tested the hypothesis that genomic prediction increases the accuracy of estimated breeding values (EBV) compared to parental average EBV, and increases response to selection for survival time compared to a traditional breeding scheme. We tested this hypothesis in two lines of brown layers with intact beaks, which show cannibalism, and also the hypothesis that the rate of inbreeding per year is lower for genomic selection than for the traditional breeding scheme. Results and discussion: The standard deviation of genomic prediction EBV for survival time was around 22 days for both lines, indicating good prospects for selection against mortality in laying hens with intact beaks. Genomic prediction increased the accuracy of the EBV by 35 and 32 % compared to the parent average EBV for the two lines. At the current reference population size, predicted response to selection was 91 % higher when using genomic selection than with the traditional breeding scheme, as a result of a shorter generation interval in males and greater accuracy of selection in females. The predicted rate of inbreeding per generation with truncation selection was substantially lower for genomic selection than for the traditional breeding scheme for both lines. Conclusions: Genomic selection for socially affected traits is a promising tool for the improvement of survival time in laying hens with intact beaks.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/genomic-prediction-of-survival-time-in-a-population-of-brown-layi |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Mortality due to cannibalism causes both economic and welfare problems in laying hens. To limit mortality due to cannibalism, laying hens are often beak-trimmed, which is undesirable for animal welfare reasons. Genetic selection is an alternative strategy to increase survival and is more efficient by taking heritable variation that originates from social interactions into account, which are modelled as the so-called indirect genetic effects (IGE). Despite the considerable heritable variation in survival time due to IGE, genetic improvement of survival time in laying hens is still challenging because the detected heritable variation of the trait with IGE is still limited, ranging from 0.06 to 0.26, and individuals that are still alive at the end of the recording period are censored. Furthermore, survival time records are available late in life and only on females. To cope with these challenges, we tested the hypothesis that genomic prediction increases the accuracy of estimated breeding values (EBV) compared to parental average EBV, and increases response to selection for survival time compared to a traditional breeding scheme. We tested this hypothesis in two lines of brown layers with intact beaks, which show cannibalism, and also the hypothesis that the rate of inbreeding per year is lower for genomic selection than for the traditional breeding scheme. Results and discussion: The standard deviation of genomic prediction EBV for survival time was around 22 days for both lines, indicating good prospects for selection against mortality in laying hens with intact beaks. Genomic prediction increased the accuracy of the EBV by 35 and 32 % compared to the parent average EBV for the two lines. At the current reference population size, predicted response to selection was 91 % higher when using genomic selection than with the traditional breeding scheme, as a result of a shorter generation interval in males and greater accuracy of selection in females. The predicted rate of inbreeding per generation with truncation selection was substantially lower for genomic selection than for the traditional breeding scheme for both lines. Conclusions: Genomic selection for socially affected traits is a promising tool for the improvement of survival time in laying hens with intact beaks. |
---|