The influence of spreading particles on the stability of thin liquid films

The influence of spreading particles on the stability of thin liquid films was investigated. Due to the spreading of a particle, i.e. an oil droplet, over a surface of a thin liquid film the latter becomes thinner and may rupture. The following steps in the whole process were distinguished: 1) transport of the particle to the film surface, 2) dewetting of the particle ensuring physical contact between the particle surface and the film surface, 3) spreading of the particle over the film surface and 4) movement of the film bulk liquid induced by the surface movement due to spreading material.An attempt was made to develop a theory that describes the spreading process quantitatively. It describes the film thinning process as a result of the liquid drag due to the surface motion initiated by the spreading material by using the parameters film thickness, droplet radius, liquid bulk viscosity, liquid bulk density and the surface rheological properties of the oil droplet and the film liquid.Model systems of foaming liquid and lipid material were used to study this spreading process. The latter was done on a relative macroscopic scale over bulk surfaces which is different compared to the dimensions and conditions which are valid for spreading particles on a foam film. It was assumed that the developed theory could be applied to both dimensions. The experimental results pointed in this direction. This was verified by the experimental results of introducing small spreading emulsion droplets on thin liquid films. A clear correlation between the above mentioned parameters and film rupture initiated by the spreading droplets was found.

Saved in:
Bibliographic Details
Main Author: Bisperink, C.G.J.
Other Authors: Prins, A.
Format: Doctoral thesis biblioteca
Language:English
Published: Landbouwuniversiteit Wageningen
Subjects:dispersion, foams, gases, interface, surface phenomena, surfaces, dispersie, gassen, grensvlak, oppervlakten, oppervlakteverschijnselen, schuim,
Online Access:https://research.wur.nl/en/publications/the-influence-of-spreading-particles-on-the-stability-of-thin-liq
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of spreading particles on the stability of thin liquid films was investigated. Due to the spreading of a particle, i.e. an oil droplet, over a surface of a thin liquid film the latter becomes thinner and may rupture. The following steps in the whole process were distinguished: 1) transport of the particle to the film surface, 2) dewetting of the particle ensuring physical contact between the particle surface and the film surface, 3) spreading of the particle over the film surface and 4) movement of the film bulk liquid induced by the surface movement due to spreading material.An attempt was made to develop a theory that describes the spreading process quantitatively. It describes the film thinning process as a result of the liquid drag due to the surface motion initiated by the spreading material by using the parameters film thickness, droplet radius, liquid bulk viscosity, liquid bulk density and the surface rheological properties of the oil droplet and the film liquid.Model systems of foaming liquid and lipid material were used to study this spreading process. The latter was done on a relative macroscopic scale over bulk surfaces which is different compared to the dimensions and conditions which are valid for spreading particles on a foam film. It was assumed that the developed theory could be applied to both dimensions. The experimental results pointed in this direction. This was verified by the experimental results of introducing small spreading emulsion droplets on thin liquid films. A clear correlation between the above mentioned parameters and film rupture initiated by the spreading droplets was found.