Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana
Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1-5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a gamma-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering.
Main Authors: | , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | accumulation, dissection, environment interactions, loci, manipulation, mutant, pathway, plants, progress, tocopherol biosynthesis, |
Online Access: | https://research.wur.nl/en/publications/genetic-basis-for-natural-variation-in-seed-vitamin-e-levels-in-a |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-350643 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-3506432024-09-23 Gilliland, L.U. Magallanes-Lundback, M. Hemming, C. Suppllee, A. Koornneef, M. Bentsink, L. DellaPenna, D. Article/Letter to editor Proceedings of the National Academy of Sciences of the United States of America 103 (2006) ISSN: 0027-8424 Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana 2006 Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1-5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a gamma-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering. en application/pdf https://research.wur.nl/en/publications/genetic-basis-for-natural-variation-in-seed-vitamin-e-levels-in-a 10.1073/pnas.0606221103 https://edepot.wur.nl/374161 accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis (c) publisher Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis |
spellingShingle |
accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis Gilliland, L.U. Magallanes-Lundback, M. Hemming, C. Suppllee, A. Koornneef, M. Bentsink, L. DellaPenna, D. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
description |
Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1-5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a gamma-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering. |
format |
Article/Letter to editor |
topic_facet |
accumulation dissection environment interactions loci manipulation mutant pathway plants progress tocopherol biosynthesis |
author |
Gilliland, L.U. Magallanes-Lundback, M. Hemming, C. Suppllee, A. Koornneef, M. Bentsink, L. DellaPenna, D. |
author_facet |
Gilliland, L.U. Magallanes-Lundback, M. Hemming, C. Suppllee, A. Koornneef, M. Bentsink, L. DellaPenna, D. |
author_sort |
Gilliland, L.U. |
title |
Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
title_short |
Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
title_full |
Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
title_fullStr |
Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
title_full_unstemmed |
Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana |
title_sort |
genetic basis for natural variation in seed vitamin e levels in arabidopsis thaliana |
url |
https://research.wur.nl/en/publications/genetic-basis-for-natural-variation-in-seed-vitamin-e-levels-in-a |
work_keys_str_mv |
AT gillilandlu geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT magallaneslundbackm geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT hemmingc geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT supplleea geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT koornneefm geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT bentsinkl geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana AT dellapennad geneticbasisfornaturalvariationinseedvitaminelevelsinarabidopsisthaliana |
_version_ |
1816162670483603456 |