The alternative sigma factor sigmaB and the stress response of Bacillus cereus

cum laude graduation (with distinction) The bacterium Bacillus cereus is responsible for a large number of cases of foodborne illness across the world. It is also an important cause of spoilage of food, in particular of milk and dairy-products. The growth and survival of B. cereus in food or during an infection is for a large part determined by to what extent the bacterium can adapt to changes in its environment. This process is known as the stress response and the protein SigmaB has an important role in it. Stress in B. cereus leads to the rapid activation of SigmaB. Subsequently, SigmaB coordinates the transcription of a set of genes, which leads to an increased resistance to stress. For example, SigmaB contributes to the growth and survival of B. cereus at low and high temperatures. It also has a role in cellular metabolism, which may indirectly also contribute to stress resistance. The knowledge obtained on the role of SigmaB in the stress response of B. cereus may contribute to the development of new, efficient, and safe methods for the production of food.

Saved in:
Bibliographic Details
Main Author: van Schaik, W.
Other Authors: Abee, Tjakko
Format: Doctoral thesis biblioteca
Language:English
Subjects:bacillus cereus, cum laude, food safety, pathogens, rna polymerase, stress response, survival, overleving, pathogenen, rna-polymerase, stressreactie, voedselveiligheid,
Online Access:https://research.wur.nl/en/publications/the-alternative-sigma-factor-sigmab-and-the-stress-response-of-ba
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:cum laude graduation (with distinction) The bacterium Bacillus cereus is responsible for a large number of cases of foodborne illness across the world. It is also an important cause of spoilage of food, in particular of milk and dairy-products. The growth and survival of B. cereus in food or during an infection is for a large part determined by to what extent the bacterium can adapt to changes in its environment. This process is known as the stress response and the protein SigmaB has an important role in it. Stress in B. cereus leads to the rapid activation of SigmaB. Subsequently, SigmaB coordinates the transcription of a set of genes, which leads to an increased resistance to stress. For example, SigmaB contributes to the growth and survival of B. cereus at low and high temperatures. It also has a role in cellular metabolism, which may indirectly also contribute to stress resistance. The knowledge obtained on the role of SigmaB in the stress response of B. cereus may contribute to the development of new, efficient, and safe methods for the production of food.