Mapeo de materia orgánica del suelo a escala de campo
Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020
Saved in:
Main Authors: | , |
---|---|
Format: | conferenceObject biblioteca |
Language: | spa |
Published: |
2020
|
Subjects: | Fertilidad del suelo, Materia orgánica, Aprendizaje automático, Regresión bayesiana, |
Online Access: | http://hdl.handle.net/11086/28140 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-unc-ar-11086-28140 |
---|---|
record_format |
koha |
spelling |
dig-unc-ar-11086-281402022-08-12T09:53:21Z Mapeo de materia orgánica del suelo a escala de campo Córdoba, Mariano Augusto Balzarini, Mónica Graciela Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020 La información sobre la distribución de la materia orgánica (MO) a escala fina es clave no solo para el manejo de la fertilidad del suelo sino también para estimar la reserva de carbono orgánico del suelo. En este trabajo se comparan dos métodos para mapear la variabilidad de MO a escala de campo: el algoritmo de aprendizaje automático quantile regression forest (QRF) y la regresión bayesiana, estimada por INLA. Ambos métodos se aplican para estimar la relación entre MO y variables de sitio, de fácil obtención, que es usada para predecir MO en sitios no muestreados. Se emplearon 279 puntos georreferenciados de MO muestreados en tres periodos (2005, 2008 y 2011) en una superficie de 2.240 ha bajo agricultura. Para el ajuste de los modelos de regresión se utilizaron variables topográficas e índices de vegetación como variables explicativas. Los resultados sugieren que la regresión bayesiana para datos con correlación espacio-temporal supera a QRF en términos de error de predicción y mapeo de la variabilidad al menos para el tipo de condiciones topográficas y de suelos del estudio. La posibilidad de mapear la evolución del contenido de MO del suelo a esta escala representa un avance para el monitoreo de la sustentabilidad. Los mapas de variabilidad espacial de la MO a escala de campo pueden ser usados para monitorear el efecto de diferentes prácticas de manejo de suelos o como alertas de medidas de manejo que incrementen la entrada de carbono al sistema. Fil: Córdoba, Mariano Augusto. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Fil: Córdoba, Mariano Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina. Fil: Córdoba, Mariano Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina. Fil: Balzarini, Mónica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina. Fil: Balzarini, Mónica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Científico Tecnológico (CCT Córdoba). Unidad de Fitopatología y Modelización Agrícola; Argentina. Fil: Balzarini, Mónica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Unidad de Fitopatología y Modelización Agrícola; Argentina. 2022-08-11T16:01:35Z 2022-08-11T16:01:35Z 2020 conferenceObject http://hdl.handle.net/11086/28140 spa Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Anales de CAI 2020. Congreso Argentino de Agroinformática (JAIIO) ISSN 2525-0949 https://49jaiio.sadio.org.ar/Anales/Cai/Contribuciones |
institution |
UNC AR |
collection |
DSpace |
country |
Argentina |
countrycode |
AR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-unc-ar |
tag |
biblioteca |
region |
America del Sur |
libraryname |
Biblioteca 'Ing. Agrónomo Moisés Farber' de la Facultad de Ciencias Agropecuarias |
language |
spa |
topic |
Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana |
spellingShingle |
Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana Córdoba, Mariano Augusto Balzarini, Mónica Graciela Mapeo de materia orgánica del suelo a escala de campo |
description |
Ponencia presentada en las 49 Jornadas Argentinas de Informática (JAIIO). 12º Congreso Argentino de AgroInformática (CAI). Modalidad virtual, 19 al 30 de Octubre de 2020 |
format |
conferenceObject |
topic_facet |
Fertilidad del suelo Materia orgánica Aprendizaje automático Regresión bayesiana |
author |
Córdoba, Mariano Augusto Balzarini, Mónica Graciela |
author_facet |
Córdoba, Mariano Augusto Balzarini, Mónica Graciela |
author_sort |
Córdoba, Mariano Augusto |
title |
Mapeo de materia orgánica del suelo a escala de campo |
title_short |
Mapeo de materia orgánica del suelo a escala de campo |
title_full |
Mapeo de materia orgánica del suelo a escala de campo |
title_fullStr |
Mapeo de materia orgánica del suelo a escala de campo |
title_full_unstemmed |
Mapeo de materia orgánica del suelo a escala de campo |
title_sort |
mapeo de materia orgánica del suelo a escala de campo |
publishDate |
2020 |
url |
http://hdl.handle.net/11086/28140 |
work_keys_str_mv |
AT cordobamarianoaugusto mapeodemateriaorganicadelsueloaescaladecampo AT balzarinimonicagraciela mapeodemateriaorganicadelsueloaescaladecampo |
_version_ |
1756011255100866560 |