Primary bioreceptivity of limestones used in southern European monuments

Different Mediterranean Basin limestones, like Calcário Ançã (Portugal), Calcário Lioz (Portugal), Piedra San Cristobal (Spain), Piedra Escúzar (Spain) and Pietra di Lecce (Italy), have been widely used as building materials in the European architecture. The aim of this study was focused on biodeterioration, mainly on evaluation of the primary bioreceptivity of those materials. A set of samples was inoculated with a cultured photosynthetic biofilm under laboratory conditions. Several assessment tools were applied to monitor the colonization overtime of the different lithotypes. After 3 months of incubation the colonization occurred endolithically in some litho-types, namely Piedra San Cristobal and Piedra Escúzar. Spectrophotometric determination of chlorophyll a was a useful analytical technique to achieve the total amount of photosynthetic biomass on rock substrates, demonstrating that Piedra Escúzar and Calcário Lioz were the highest and lowest bioreceptive lithotypes, respectively. Microscopic and image analyses were essential to understand the stone colonization process and its pattern of distribution. Physical stone parameters and exposure conditions were shown to play an important role in the establishment and development of photosynthetic colonization. © The Geological Society of London 2010.

Saved in:
Bibliographic Details
Main Authors: Miller, A. Z., Leal, Nuno, Laiz Trobajo, L., Rogerio Candelera, Miguel A., Silva, Rui J. C., Dionísio, A., Macedo, M. F., Sáiz-Jiménez, Cesáreo
Format: artículo biblioteca
Language:English
Published: Geological Society of London 2010
Online Access:http://hdl.handle.net/10261/57338
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different Mediterranean Basin limestones, like Calcário Ançã (Portugal), Calcário Lioz (Portugal), Piedra San Cristobal (Spain), Piedra Escúzar (Spain) and Pietra di Lecce (Italy), have been widely used as building materials in the European architecture. The aim of this study was focused on biodeterioration, mainly on evaluation of the primary bioreceptivity of those materials. A set of samples was inoculated with a cultured photosynthetic biofilm under laboratory conditions. Several assessment tools were applied to monitor the colonization overtime of the different lithotypes. After 3 months of incubation the colonization occurred endolithically in some litho-types, namely Piedra San Cristobal and Piedra Escúzar. Spectrophotometric determination of chlorophyll a was a useful analytical technique to achieve the total amount of photosynthetic biomass on rock substrates, demonstrating that Piedra Escúzar and Calcário Lioz were the highest and lowest bioreceptive lithotypes, respectively. Microscopic and image analyses were essential to understand the stone colonization process and its pattern of distribution. Physical stone parameters and exposure conditions were shown to play an important role in the establishment and development of photosynthetic colonization. © The Geological Society of London 2010.