Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics

Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.

Saved in:
Bibliographic Details
Main Authors: Martín-Pozas, Tamara, Cuezva, Soledad, Fernández-Cortés, Ángel, Cañaveras, Juan Carlos, Benavente, David, Jurado, Valme, Sáiz-Jiménez, Cesáreo, Janssens, Ivan, Seijas, Naomí, Sánchez Moral, Sergio
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:English
Published: Elsevier 2022-07-20
Subjects:Microbial activity, Subterranean ecosystems, Greenhouse gas fluxes, Moonmilk, Biomineralization,
Online Access:http://hdl.handle.net/10261/267329
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100004837
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-irnas-es-10261-267329
record_format koha
spelling dig-irnas-es-10261-2673292022-04-21T01:51:37Z Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics Martín-Pozas, Tamara Cuezva, Soledad Fernández-Cortés, Ángel Cañaveras, Juan Carlos Benavente, David Jurado, Valme Sáiz-Jiménez, Cesáreo Janssens, Ivan Seijas, Naomí Sánchez Moral, Sergio Ministerio de Ciencia e Innovación (España) European Commission Microbial activity Subterranean ecosystems Greenhouse gas fluxes Moonmilk Biomineralization Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions. This work was supported by the Spanish Ministry of Science, Innovation through project PID2019-110603RB-I00, MCIN/AEI/FEDER UE/10.13039/501100011033 and with collaboration of projects RTI2018-099052-B-I00 and PID2020-114978GB-I00. This research has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 844535 — MIFLUKE. Peer reviewed 2022-04-20T11:40:18Z 2022-04-20T11:40:18Z 2022-07-20 artículo http://purl.org/coar/resource_type/c_6501 Science of the Total Environment 831: 154921 (2022) 0048-9697 http://hdl.handle.net/10261/267329 10.1016/j.scitotenv.2022.154921 1879-1026 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100004837 en #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110603RB-I00/ES/CONTROL AMBIENTAL DE LA ACTIVIDAD MICROBIANA EN ECOSISTEMAS NATURALES SUBTERRANEOS: IMPLICACIONES EN FLUJOS DE GEIS, DETECCION DE BIOSEÑALES Y ESTRATEGIAS DE CONSERVACION/ info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099052-B-I00/ES/CUANTIFICACION Y MODELIZACION DEL TRANSPORTE DE RADON EN SUELOS. VALORACION DE SU RIESGO POTENCIAL Y USO COMO TRAZADOR GEOQUIMICO NATURAL/ info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114978GB-I00/ES/GEOQUIMICA AMBIENTAL Y GEOMICROBIOLOGIA DE LAS CUEVAS DE YESOS DE SORBAS, ALMERIA Y DE ITALIA/ info:eu-repo/grantAgreement/EC/H2020/844535 Publisher's version Sí open Elsevier
institution IRNAS ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-irnas-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IRNAS España
language English
topic Microbial activity
Subterranean ecosystems
Greenhouse gas fluxes
Moonmilk
Biomineralization
Microbial activity
Subterranean ecosystems
Greenhouse gas fluxes
Moonmilk
Biomineralization
spellingShingle Microbial activity
Subterranean ecosystems
Greenhouse gas fluxes
Moonmilk
Biomineralization
Microbial activity
Subterranean ecosystems
Greenhouse gas fluxes
Moonmilk
Biomineralization
Martín-Pozas, Tamara
Cuezva, Soledad
Fernández-Cortés, Ángel
Cañaveras, Juan Carlos
Benavente, David
Jurado, Valme
Sáiz-Jiménez, Cesáreo
Janssens, Ivan
Seijas, Naomí
Sánchez Moral, Sergio
Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
description Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.
author2 Ministerio de Ciencia e Innovación (España)
author_facet Ministerio de Ciencia e Innovación (España)
Martín-Pozas, Tamara
Cuezva, Soledad
Fernández-Cortés, Ángel
Cañaveras, Juan Carlos
Benavente, David
Jurado, Valme
Sáiz-Jiménez, Cesáreo
Janssens, Ivan
Seijas, Naomí
Sánchez Moral, Sergio
format artículo
topic_facet Microbial activity
Subterranean ecosystems
Greenhouse gas fluxes
Moonmilk
Biomineralization
author Martín-Pozas, Tamara
Cuezva, Soledad
Fernández-Cortés, Ángel
Cañaveras, Juan Carlos
Benavente, David
Jurado, Valme
Sáiz-Jiménez, Cesáreo
Janssens, Ivan
Seijas, Naomí
Sánchez Moral, Sergio
author_sort Martín-Pozas, Tamara
title Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
title_short Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
title_full Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
title_fullStr Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
title_full_unstemmed Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
title_sort role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
publisher Elsevier
publishDate 2022-07-20
url http://hdl.handle.net/10261/267329
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100004837
work_keys_str_mv AT martinpozastamara roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT cuezvasoledad roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT fernandezcortesangel roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT canaverasjuancarlos roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT benaventedavid roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT juradovalme roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT saizjimenezcesareo roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT janssensivan roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT seijasnaomi roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
AT sanchezmoralsergio roleofsubterraneanmicrobiotainthecarboncycleandgreenhousegasdynamics
_version_ 1777665119785844736