Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress
The growth of pea epicotyls was dramatically reduced when subjected to water stress induced by PEG 6000. The degree of inhibition was proportional to the concentration of PEG, although variability among cultivars was observed. Intraspecific variability in growth under water stress could be due to differences in the osmotic adjustment or turgor maintenance capability of each variety. To test this hypothesis, osmotic adjustment (the difference in Ψs at saturation in watered epicotyls and Ψs at saturation when epicotyls were at 70% relative water content (RWC), as measured from logΨs against logRWC plots) and turgor maintenance (measured from Ψs versus Ψw plots as Ψ w at the point of turgor loss) were calculated in epicotyls. All cultivars were capable of osmotic adjustment from 0.30 to 0.65MPa, while turgor maintenance varied between -2.436 and -3.906MPa. A significant correlation between growth and osmotic adjustment, and turgor maintenance was observed, but only at the highest concentrations of PEG assayed. The coefficient of correlation was at 30mM PEG, r=0.70 (P<0.01) and r=-0.79 (P<0.01), and at 46mM PEG, r=0.64 (P<0.05) and r=-0.89 (P<0.01) for osmotic adjustment and turgor maintenance, respectively. Water stress induced the accumulation of soluble sugars in epicotyls between 2.8- and 5.1-fold. Their contribution to osmotic adjustment was very important, varying from 34 to 46% depending on cultivar. Free proline in the epicotyls increased between 5- and 50-fold. Its contribution to osmotic adjustment varied from 3 to 5% depending on cultivar. To determine whether osmotic adjustment and turgor maintenance were related in epicotyl and adult stages, a comparison was made between them, and a significant correlation found for turgor maintenance (r=0.78; P<0.01). The results obtained indicate that measurements made at early stages of development could be used to identify drought-tolerant genotypes. © 2003 Elsevier B.V. All rights reserved.
Main Authors: | , , , |
---|---|
Format: | journal article biblioteca |
Language: | English |
Published: |
Elsevier
2004
|
Subjects: | Drought tolerance, Soluble sugars, Proline, Water potential, Osmotic potential, |
Online Access: | http://hdl.handle.net/20.500.12792/4032 http://hdl.handle.net/10261/294535 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-inia-es-10261-294535 |
---|---|
record_format |
koha |
spelling |
dig-inia-es-10261-2945352023-02-20T10:39:39Z Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress Sánchez Jiménez, Francisco Javier De Andrés Parlorio, Eusebio Francisco Tenorio, J. L. Ayerbe, L. Drought tolerance Soluble sugars Proline Water potential Osmotic potential The growth of pea epicotyls was dramatically reduced when subjected to water stress induced by PEG 6000. The degree of inhibition was proportional to the concentration of PEG, although variability among cultivars was observed. Intraspecific variability in growth under water stress could be due to differences in the osmotic adjustment or turgor maintenance capability of each variety. To test this hypothesis, osmotic adjustment (the difference in Ψs at saturation in watered epicotyls and Ψs at saturation when epicotyls were at 70% relative water content (RWC), as measured from logΨs against logRWC plots) and turgor maintenance (measured from Ψs versus Ψw plots as Ψ w at the point of turgor loss) were calculated in epicotyls. All cultivars were capable of osmotic adjustment from 0.30 to 0.65MPa, while turgor maintenance varied between -2.436 and -3.906MPa. A significant correlation between growth and osmotic adjustment, and turgor maintenance was observed, but only at the highest concentrations of PEG assayed. The coefficient of correlation was at 30mM PEG, r=0.70 (P<0.01) and r=-0.79 (P<0.01), and at 46mM PEG, r=0.64 (P<0.05) and r=-0.89 (P<0.01) for osmotic adjustment and turgor maintenance, respectively. Water stress induced the accumulation of soluble sugars in epicotyls between 2.8- and 5.1-fold. Their contribution to osmotic adjustment was very important, varying from 34 to 46% depending on cultivar. Free proline in the epicotyls increased between 5- and 50-fold. Its contribution to osmotic adjustment varied from 3 to 5% depending on cultivar. To determine whether osmotic adjustment and turgor maintenance were related in epicotyl and adult stages, a comparison was made between them, and a significant correlation found for turgor maintenance (r=0.78; P<0.01). The results obtained indicate that measurements made at early stages of development could be used to identify drought-tolerant genotypes. © 2003 Elsevier B.V. All rights reserved. 2023-02-20T10:39:39Z 2023-02-20T10:39:39Z 2004 journal article Field Crops Research 86(1): 81-90 (2004) 0378-4290 http://hdl.handle.net/20.500.12792/4032 http://hdl.handle.net/10261/294535 10.1016/S0378-4290(03)00121-7 en none Elsevier |
institution |
INIA ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-inia-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del INIA España |
language |
English |
topic |
Drought tolerance Soluble sugars Proline Water potential Osmotic potential Drought tolerance Soluble sugars Proline Water potential Osmotic potential |
spellingShingle |
Drought tolerance Soluble sugars Proline Water potential Osmotic potential Drought tolerance Soluble sugars Proline Water potential Osmotic potential Sánchez Jiménez, Francisco Javier De Andrés Parlorio, Eusebio Francisco Tenorio, J. L. Ayerbe, L. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
description |
The growth of pea epicotyls was dramatically reduced when subjected to water stress induced by PEG 6000. The degree of inhibition was proportional to the concentration of PEG, although variability among cultivars was observed. Intraspecific variability in growth under water stress could be due to differences in the osmotic adjustment or turgor maintenance capability of each variety. To test this hypothesis, osmotic adjustment (the difference in Ψs at saturation in watered epicotyls and Ψs at saturation when epicotyls were at 70% relative water content (RWC), as measured from logΨs against logRWC plots) and turgor maintenance (measured from Ψs versus Ψw plots as Ψ w at the point of turgor loss) were calculated in epicotyls. All cultivars were capable of osmotic adjustment from 0.30 to 0.65MPa, while turgor maintenance varied between -2.436 and -3.906MPa. A significant correlation between growth and osmotic adjustment, and turgor maintenance was observed, but only at the highest concentrations of PEG assayed. The coefficient of correlation was at 30mM PEG, r=0.70 (P<0.01) and r=-0.79 (P<0.01), and at 46mM PEG, r=0.64 (P<0.05) and r=-0.89 (P<0.01) for osmotic adjustment and turgor maintenance, respectively. Water stress induced the accumulation of soluble sugars in epicotyls between 2.8- and 5.1-fold. Their contribution to osmotic adjustment was very important, varying from 34 to 46% depending on cultivar. Free proline in the epicotyls increased between 5- and 50-fold. Its contribution to osmotic adjustment varied from 3 to 5% depending on cultivar. To determine whether osmotic adjustment and turgor maintenance were related in epicotyl and adult stages, a comparison was made between them, and a significant correlation found for turgor maintenance (r=0.78; P<0.01). The results obtained indicate that measurements made at early stages of development could be used to identify drought-tolerant genotypes. © 2003 Elsevier B.V. All rights reserved. |
format |
journal article |
topic_facet |
Drought tolerance Soluble sugars Proline Water potential Osmotic potential |
author |
Sánchez Jiménez, Francisco Javier De Andrés Parlorio, Eusebio Francisco Tenorio, J. L. Ayerbe, L. |
author_facet |
Sánchez Jiménez, Francisco Javier De Andrés Parlorio, Eusebio Francisco Tenorio, J. L. Ayerbe, L. |
author_sort |
Sánchez Jiménez, Francisco Javier |
title |
Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
title_short |
Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
title_full |
Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
title_fullStr |
Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
title_full_unstemmed |
Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress |
title_sort |
growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (pisum sativum l.) subjected to water stress |
publisher |
Elsevier |
publishDate |
2004 |
url |
http://hdl.handle.net/20.500.12792/4032 http://hdl.handle.net/10261/294535 |
work_keys_str_mv |
AT sanchezjimenezfranciscojavier growthofepicotylsturgormaintenanceandosmoticadjustmentinpeaplantspisumsativumlsubjectedtowaterstress AT deandresparlorioeusebiofrancisco growthofepicotylsturgormaintenanceandosmoticadjustmentinpeaplantspisumsativumlsubjectedtowaterstress AT tenoriojl growthofepicotylsturgormaintenanceandosmoticadjustmentinpeaplantspisumsativumlsubjectedtowaterstress AT ayerbel growthofepicotylsturgormaintenanceandosmoticadjustmentinpeaplantspisumsativumlsubjectedtowaterstress |
_version_ |
1767603627811143680 |